Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

PHOTOIONIZATION OF RYDBERG STATES OF K III IONS

Abstract

Accurate resonance energies and quantum defects for various Rydberg series originating from the 3s2 3p5  (23/2) ground and 3s2 3p5  (23/2) metastable states of K III ions are reported up to n = 30. Theoretical photoionization is performed in the framework of the screening constant per unit nuclear charge (SCUNC) method. The SCUNC predictions, believed to be the first calculations, agree very well with the only available advanced light source (ALS) measurements. Some of the overlap peaks in the ALS measurements are clearly identified via the present SCUNC calculations. The present work demonstrates the strength of the SCUNC formalism to assist experimenters in the analysis of measurements from synchrotron radiation. New data are tabulated for n = 15–30. 

About the Authors

I. Sakho
Department of Physics Chemistry, UFR Sciences and Technologies Iba Der Thiam University
Senegal

Thies



M. T. Gning
Department of Physics Chemistry, UFR Sciences and Technologies Iba Der Thiam University
Senegal

Thies



A. Diallo
Department of Physics Chemistry, UFR Sciences and Technologies Iba Der Thiam University
Senegal

Thies



References

1. N. Amin et al., J. Quant. Spectrosc. Radiat. Transfer, 109, 863 (2008), https://doi:10.1016/j.jqsrt.2007.09.008.

2. A. Yar, R. Ali, M. A. Baig, Phys. Rev. A, 87, 045401 (2013), https://doi.org/10.1103/PhysRevA. 87.045401.

3. A. Yar, R. Ali, M. A.Baig, Phys. Rev. A, 88, 033405 (2013), https://doi.org/10.1103/PhysRevA. 88.033405.

4. M. A. Kalyar, et al., Opt. Laser Technol., 77, 72 (2016), http://dx.doi.org/10.1016/j.optlastec.2015.09.001.

5. S. Noll, et al., J. Geophys. Res.: Atmosphere, 124, 6612–6629 (2019), https://doi.org/10.1029/2018JD030044

6. E. Keles, et al., MNRAS, 489, L37–L41 (2019), https://doi:10.1093/mnrasl/slz123.

7. M. E. Weller, et al., The Astrophys. J., 881, 92(1–4) (2019), https://doi.org/10.3847/1538-4357.

8. M. A. Baig, Atoms, 10, 39 (2022), https://doi.org/10.3390/atoms10020039.

9. I. M. Savukov, Phys. Rev. A, 76 032710 (2007), https://doi.org/10.1103/PhysRevA.76.032710.

10. O. Zatsarinny, S. S. Tayal, Phys. Rev. A, 81, 043423 (2010), https://doi.org/10.1103/PhysRevA.81. 043423.

11. A. Singor, D. Fursa, I. Bray, R. McEachran, Atoms, 9, 42 (2021), https://doi.org/10.3390/atoms9030042.

12. I. Sakho, J. Appl. Spectrosc., 90, 4 (2023), doi: 10.1007/s10812-023-01618-3.

13. G. A. Alna’Washi et al., Phys. Rev. A, 90, 023417 (2014), doi: 10.1103/PhysRevA.90.023417.

14. I. Sakho, Atoms, 11, 26 (2023), https://doi.org/10.3390/atoms 11020026.

15. I Sakho, M. T. Gning, Results in Physics, 55, 107168(1–9) (2023), https://doi.org/10.1016/j.rinp.2023.107168.

16. M. T. Gning, I. Sakho, Atoms, 11, 152 (2023), https://doi.org/10.3390/atoms11120152.


Review

For citations:


Sakho I., Gning M.T., Diallo A. PHOTOIONIZATION OF RYDBERG STATES OF K III IONS. Zhurnal Prikladnoii Spektroskopii. 2025;92(1):127.

Views: 58


ISSN 0514-7506 (Print)