

Photoluminescence Spectra of Stacking Defects in 4H-SiC Crystals
Abstract
Cree 4H-SiC single crystal wafers are studied by high-resolution non-destructive photoluminescence at room temperature to experimentally investigate near-band-edge (NBE) and stacking fault photoluminescence. The contribution of stacking fault photoluminescence to the photoluminescence spectrum of the original 4H-SiC crystals allows evaluating the relation of band-to-band, NBE, and stacking fault photoluminescence. The experimental photoluminescence spectrum of 4H-SiC obeys the Lorentzian distribution. Electron-phonon interaction leads to a significant mutual dependence of the intensities of band-to-band, NBE, and stacking fault photoluminescence.
About the Authors
B. G. AtabaevUzbekistan
Tashkent
Kh. N. Juraev
Uzbekistan
Tashkent
Z. Sh. Shaymardanov
Uzbekistan
Tashkent
R. R. Jalolov
Uzbekistan
Tashkent
Sh. Z. Urolov
Uzbekistan
Tashkent
References
1. S-M. Koo, Q. Li, M. D. Edelstein, C. A. Richter, E.M. Vogel. Nano Lett. 5, 12, 2519–2523 (2005), https://doi.org/10.1021/nl051855i
2. J.B. Casady, R.W. Johnson. Solid-State Electron. 39, 1409-1422 (1996), https://doi.org/10.1016/0038-1101(96)00045-7
3. K.N. Zhuraev, A.Yusupov, A.G. Gulyamov, M. U. Khazhiev, D. Sh. Saidov, N. B. Adilov. J Eng Phys Thermophys., 93, 1036–1041 (2020). https://doi.org/10.1007/s10891-020-02205-5
4. Muthu B.J. Wijesundara. Silicon Carbide Microsystems for Harsh Environments. Springer Science+Business Media, LLC 2011. https://doi.org/10.1007/978-1-4419-7121-0
5. I.G. Atabaev, Kh.N. Juraev, V.A. Pak. Adv. Condens. Matter Phys., 2017, 7820676 (2017). https://doi.org/10.1155/2017/7820676
6. K. Maeda, K. Suzuki, and M. Ichihara. Microsc. Microanal. Microstruct., 4, 211 (1993). https://doi.org/10.1051/mmm:0199300402-3021100
7. N. Thierry-Jebali, C. Kawahara, T. Miyazawa, H. Tsuchida, and T. Kimoto, AIP Adv., 5, 037121 (2015). https://doi.org/10.1063/1.4915128
8. C. Hallin, A.O. Konstantinov, B. Pécz, O. Kordina, E. Janzén. Diamond Relat. Mater., 6, 1297 (1997). https://doi.org/10.1016/S0925-9635(97)00083-6
9. S.I. Maximenko, J.A. Freitas, Y.N. Picard, P.B. Klein, R.L. Myers-Ward, K. K. Lew, P.G. Muzykov, D.K. Gaskill, C.R. Eddy, T.S. Sudarshan. Mater. Sci. Forum 645–648, 211 (2010) https://doi.org/10.4028/www.scientific.net/MSF.645-648.211
10. E. B. Yakimov, G. Regula, B. Pichaud. J. Appl. Phys., 114, 084903 (2013). https://doi.org/10.1063/1.4818306
11. A.A. Lebedev, B.Ya. Ber, N.V. Seredova, D.Yu. Kazantsev, V.V. Kozlovski. J. Phys. D: Appl. Phys., 48, 485106 (2015), https://doi.org/10.1088/0022-3727/48/48/485106
12. H.F. Xiong, X.S. Lu, X. Gao, Y.C. Yan, S. Liu, L.H. Song, D.R. Yang, and X.D. Pi. J. Semicond., 45(7), 072502 (2024). https://doi.org/10.1088/1674-4926/23090024
13. A.A. Lebedev, V.V. Kozlovski, M.E. Levinshtein, A.E. Ivanov, K.S. Davydovskaya. Solid-State Electron., 181–182, 108009 (2021), https://doi.org/10.1016/j.sse.2021.108009
14. Y. Zhang, K. Wang, H. Wang, Y. Tian, Y. Wang, J. Li, Y. Chai. Журнал прикладной спектроскопии, 87 (6), 891-896 (2020). (Y. Zhang, K. Wang, H. Wang, Y. Tian, Y. Wang, J. Li, Y. Chai. J. Appl. Spectrosc., 87, 1023–1028 (2021). https://doi.org/10.1007/s10812-021-01104-8 )
15. I.G. Atabaev, C.C. Tin, B.G. Atabaev, T.M. Saliev, E.N. Bakhranov, N.A. Matchanov, S.L. Lutpullaev, J. Zhang, N.G. Saidkhanova, F.R. Yuzikaeva, I. Nuritdinov, A.K. Islomov, M.Z. Amanov, R., A. Kumta. Mater. Sci. Forum, 600-603, 457 (2009). https://doi.org/10.4028/www.scientific.net/MSF.600-603.457
16. Xia Liu, Lianzhen Cao, Hang Song, Hong Jiang. Phys. E: Low-Dimens. Syst. Nanostructures, 61, 167-170 (2014) https://doi.org/10.1016/j.physe.2014.03.029
17. S. El Hageali, H. Guthrey, S. Johnston, J. Soto, B. Odekirk, B. Gorman, M. Al-Jassim. J. Appl. Phys., 131(18), 185705 (2022). https://doi.org/10.1063/5.0088313
18. G. Feng, J. Suda, T. Kimoto. Appl. Phys. Lett., 92, 221906 (2008) https://doi.org/10.1063/1.2937097
19. S.I. Maximenko, J.A. Freitas, P.B. Klein, A. Shrivastava, T.S. Sudarshan. Appl. Phys. Lett., 94 (9): 092101 (2009). https://doi.org/10.1063/1.3089231
20. G. Feng, J. Suda, T. Kimoto. Appl. Phys. Lett., 94 (9): 091910 (2009). https://doi.org/10.1063/1.3095508
21. A. Meli, A. Muoio, A. Trotta, L. Meda, M. Parisi, F. La Via. Materials, 14, 976 (2021). https://doi.org/10.3390/ma14040976
22. M. Na, W. Bahng, H. Jung, C. Oh, D. Jang, S.-K. Hong. Appl. Phys. Lett., 124, 152109 (2024). https://doi.org/10.1063/5.0198216
23. G. Regula, E.B. Yakimov. Superlattices Microstruct., 99, 226-230 (2016).
24. V.I. Orlov, G. Regula, E.B. Yakimov. Acta Mater., 139, 155-162 (2017), https://doi.org/10.1016/j.actamat.2017.07.046
25. V.I. Orlov, E.B. Yakimov. J. Surf. Investig., 11, 234–237 (2017). https://doi.org/10.1134/S1027451016050578
26. E.B. Yakimov, E.E. Yakimov, V.I. Orlov, D. Gogova. Superlattices Microstruct., 120, 7-14 (2018), https://doi.org/10.1016/j.spmi.2018.05.014
27. V.I. Orlov, E.E. Yakimov, E.B. Yakimov. Phys. Status Solidi A, 216, 1900151 (2019). https://doi.org/10.1002/pssa.201900151
28. E.E. Yakimov, E.B. Yakimov. J. Alloys Compd., 837, 155470 (2020), https://doi.org/10.1016/j.jallcom.2020.155470
Supplementary files
Review
For citations:
Atabaev B.G., Juraev Kh.N., Shaymardanov Z.Sh., Jalolov R.R., Urolov Sh.Z. Photoluminescence Spectra of Stacking Defects in 4H-SiC Crystals. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):582-587. (In Russ.)