

Crystal Structure, Luminescent Properties and Prospects of the Use of Ba3La2–хTbx(Ge3O9)2, Ba3La1.3Tb0.7–xEux(Ge3O9)2 Compounds in Optical Thermometry
Abstract
New thermosensitive luminescent materials based on Ba3La2(Ge3O9)2 doped with Tb3+ or Tb3+/Eu3+ ions have been studied. Ba3La2-х Tbx(Ge3O9)2 and Ba3La1.3Tb0.7–xEux(Ge3O9)2 solid solutions were synthesized by the solid-phase method. According to the results of X-ray diffraction analysis, all samples crystallize in the monoclinic syngony (space group C2/c, Z = 4). The luminescent properties of Ba3La2–xTbx(Ge3O9)2 germanates were studied under excitation by radiation with λex = 377 nm. The spectra consist of a number of bands in the region of 470—640 nm, caused by transitions from excited 5D4 to 7FJ (J = 3, 4, 5, 6) levels in Tb3+ ions. The maximum luminescence intensity is observed for the sample with x = 0.7. Co-doping of phases with Eu3+ ions leads to the appearance of additional lines in the luminescence spectra in the orange-red region, associated with the transitions 5D0→7FJ (J = 0, 1, 2, 3, 4) in europium ions. For Ba3La1.3Tb0.1Eu0.6(Ge3O9)2 sample, the color characteristics were studied and the temperature dependences of the intensity ratio of the luminescent bands were investigated upon heating from 298 to 473 K. It was shown that heating the phosphor leads to an uneven decrease in the intensity of the main emission lines. The maximum values of sensitivities: Sa (1.05 %/K) and Sr (1.00 %/K), are achieved at T = 298 K.
About the Authors
A. V. BigbaevaRussian Federation
Ekaterinburg
O. A. Lipina
Russian Federation
Ekaterinburg
L. L. Surat
Russian Federation
Ekaterinburg
A. Yu. Chufarov
Russian Federation
Ekaterinburg
A. P. Tyutyunnik
Russian Federation
Ekaterinburg
Ya. V. Baklanova
Russian Federation
Ekaterinburg
V. G. Zubkov
Russian Federation
Ekaterinburg
References
1. C. D. S. Brites, A. Millán, L. D. Carlos. Hand. Phys. Chem. Rare Earths, 49 (2016) 339
2. C. D. S Brites, P. P Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, L. D. Carlos. Nanoscale, 4 (2012) 4799
3. V. K. Rai, S. B. Rai. Appl. Phys., 87 (2007) 323
4. M. Dramićanin. Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing, Luminescence Thermometry: Methods, Materials, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 2018, ch. 6 (2018) 113—157
5. A. V. Chvanova, O. A. Lipina, A. Yu. Chufarov, A. P. Tyutyunnik, Ya. V. Baklanova, L. L. Surat, V. G. Zubkov. Russ. J. Inorg. Chem., 68, N 3 (2023) 325
6. O. A. Lipina, T. S. Spiridonova, Ya. V. Baklanova, E. G. Khaikina. Russ. J. Inorg. Chem, 68, N 5 (2023) 529
7. O. A. Lipina, Ya. V. Baklanova, T. S. Spiridonova, E. G. Khaikina. Cryst. Eng. Comm., 26, N 3 (2024) 277
8. O. A. Lipina, L. L. Surat, A. Yu. Chufarov, I. V. Baklanova, A. N. Enyashin, M. A. Melkozerova, A. P. Tyutyunnik, V. G. Zubkov. Dalton Trans., 52, N 22 (2023) 7482
9. I. V. Baklanova, V. N., Krasil’nikov, A. P. Tyutyunnik, Ya. V. Baklanova. J. Appl. Spectr., 91, N 2 (2024) 267
10. W. Xu, X. Zhu, D. Zhao, L. J. Zheng, F. K. Shang, Z. G. Zhang. J. Rare Earths, 40, N 2 (2022) 201
11. L. Zhao, B. Lou, J. Mao, B. Jiang, X. Wei, Y. Chen, M. Yin. Mater. Res. Bull., 109 (2019) 103
12. Y. Cheng., R. Wang, D. Li, Z. Lv, S. Zhao., Y. Zhang, Q. Wang, X. Zhang, Y. Wan., X. Zou, H. Zhang. J. Alloys Compd., 1002 (2024) 175268
13. Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, Y. Wang. Func. Mater., 26 (2016) 3139
14. A. V. Chvanova, O. A. Lipina, A. Yu. Chufarov, A. P. Tyutyunnik, L. L. Surat, V. G. Zubkov. Opt. Spectrosc., 132, N 6 (2024) 608
15. M. Song, W. Zhao, J. Xue, L. Wang, J. Wang. J. Lumin., 235 (2021) 118014
16. Y. Zhang, X. Chen, Y. Bu, Y. Chen, J. Fu, J. Li, D. Deng. Opt. Commun., 542, N 8 (2023) 129587
17. J. Xue, H. M. Noh, B. C. Choi, S. H. Park, J. H. Kim, J. H. Jeong, P. Du. Chem. Eng. J., 382 (2020) 122861
18. Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu, Y. Wang. Adv. Func. Mater., 26 (2016) 3139—3145
19. L. Li, X. Tang, Z. Wu, Y. Zheng, S. Jiang, X. Tang, G. Xiang, X. Zhou. J. Alloys Compd., 780 (2019) 266—275
20. D. V. M. Paiva, S. K. Jakka, M. A. S. Silva, J. P. C. Nascimento, M. P. F. Graça, A. S. B. Sombra, M. J. Soares, S. E. Mazzetto, P. B. A. Fechine, K. Pavani. Optik, 246 (2021) 167825—167832
21. I. E. Kolesnikov, D. V. Mamonova, M. A. Kurochkin, V. A. Medvedev, E. Yu. Kolesnikov. J. Alloys Compd., 922 (2022) 166182
22. J. Deng, Z. Wang, W. Zhou, M. Yu, J. Min, X. Jiang, Z. Xue, C. Ma, Z. Cheng, G. Luo. Ceram. Int., 49, N 9 (2023) 14478—14486
23. M. A. Melkozerova, O. A. Lipina, Ya. V. Baklanova, A. P. Tyutyunnik, V. G. Zubkov. J. Phys. Chem. Solids, 103 (2017) 76
24. A. Y. Chufarov, O. A. Lipina, L. L. Surat, M. A. Melkozerova, Y. V. Baklanova, A. N. Enyashin, A. P. Tyutyunnik, D. G. Kellerman, V. G. Zubkov. Cryst. Eng. Comm., 20 (2018) 2404
25. O. A. Lipina, Ya. V. Baklanova, I. S. Popov, L. L. Surat, A. Yu. Chufarov, A. P. Tyutyunnik, A. A. Rybnikova, V. G. Zubkov. J. Phys. D: Appl. Phys., 58 (2025) 095302
26. W. Kraus, G. Nolze. J. Appl. Cryst., 29 (1996) 301—303
27. R. D. Shannon. Acta Crystallogr. Sect. A: Cryst. Phys. Diff. Theor. Gen. Crystallogr., 32 (1976) 751
28. V. A. Pustovarov, D. A. Tavrunov, E. O. Savinov, M. N. Sarychev, A. A. Sapov. Opt. Mater., 158 (2025) 116484
29. J. Drabik, R. Kowalski, L. Marciniak. Sci. Rep., 10 (2020) 11190
30. O. A. Lipina, A. V. Chvanova, L. L. Surat, Ya. V. Baklanova, A. Yu. Chufarov, A. P. Tyutyunnik, V. G. Zubkov. Dalton Trans., 53, N 18 (2024) 7985
31. M. Song, W. Zhao, J. Xue, L. Wang, J. Wang. J. Lumin., 235 (2021) 118014
32. C. Han, J. Tan, A. Xiang, T. Yuan. Opt. Mater., 118 (2021) 111232
33. Y. Chen, Y. Shen, L. Zhou, J. Lin, J. Fu, Q. Fang, R. Ye, Y. Shen, S. Xu, L. Lei, D. Deng. J. Lumin., 249 (2022) 118995
34. J. Fu, Y. Chen, J. Lin, R. Ye, L. Lei, Y. Shen, D. Deng, S. Xu. Spectrochim. Acta, A, 297 (2023) 122754
35. K. L. Kelly. J. Opt. Soc. Am., 33 (1943) 627
Supplementary files
Review
For citations:
Bigbaeva A.V., Lipina O.A., Surat L.L., Chufarov A.Yu., Tyutyunnik A.P., Baklanova Ya.V., Zubkov V.G. Crystal Structure, Luminescent Properties and Prospects of the Use of Ba3La2–хTbx(Ge3O9)2, Ba3La1.3Tb0.7–xEux(Ge3O9)2 Compounds in Optical Thermometry. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):451-461. (In Russ.)