

Influence of the Atmosphere Turbulence Simulator on the Parameters of the Bessel Light Beam at Different Configurations of the Optical Setup
Abstract
Influence of media containing optical inhomogeneities on the Bessel light beam (BLB) parameters has been studied comprehensively. BLB have been formed by optical setup in two configurations. In configuration I Gaussian (or Laguerre-Gaussian) laser beam is propagating through atmospheric turbulence simulator (ATS). The resulting distorted beam is then used to form the BLB with help of an axicon. In the case of incident Gaussian beam the BLB of the zero order is formed, in the case of Laguerre-Gaussian beam the first order BLB is formed. In configuration II BLB of the zero or the first order is propagating through ATS. Original Gaussian and Laguerre-Gaussian beams correspondingly are undisturbed in this case. The presence of a turbulence of inner scale lower than the diameter of propagating through it laser beam causes significant change in BLB quality parameters in both configurations. The most sensitive is the parameter of constancy, the least sensitive is the parameter of roundness. With the increase of a distance from axicon the sensitivity of all quality parameters increases. Large scale inhomogeneities, that are significantly larger than the diameter of propagating through ATS beam, cause substantial change in beam axis location. Due to the fact, that BLB of the zero order is much easily formed than BLB of the first order, it is optimal to use BLB of the zero order to investigate the turbulence. For unambiguity and more clear interpretation of the obtained results, it is rational to use configuration I with Gaussian beam. The results obtained can be used for the development of analyzers (detectors) of heterogeneity in liquid or gaseous media in natural conditions and in industry, as well as for the quality assessment of extended transparent products.
About the Authors
A. A. RyzhevichBelarus
Minsk
I. V. Balykin
Belarus
Minsk
T. A. Zheleznyakova
Belarus
Minsk
N. S. Kazak
Belarus
Minsk
References
1. Д. Стробен. Распространение лазерного пучка в атмосфере, пер. с англ., Мир, Москва (1981)
2. L. C. Andrews, R. L. Phillips. Laser Beam Propagation Through Random Media, 2nd ed., SPIE (2005), https://doi.org/10.1117/3.626196
3. A. Tunick. Opt. Express, 16, N 19 (2008) 14645, https://doi.org/10.1364/oe.16.014645
4. А. Н. Колмогоров. Докл. АН СССР, 30, № 4 (1941)
5. H. G. Booker, J. A. Ferguson, H. O. Vats. J. Atm. Terrestrial Phys., 47, N 4 (1985) 381—399, https://doi.org/10.1016/0021-9169(85)90018-2
6. L. C. Andrews, R. L. Phillips, A. R. Weeks. Waves Random Media, 7, N 2 (1997) 229—244, https://doi.org/10.1088/0959-7174/7/2/005
7. S. S. Chesnokov, V. P. Kandidov, V. I. Shmalhausen, V. V. Shuvalov. Numerical/Optical Simulation of Laser Beam Propagation Through Atmospheric Turbulence, Defense Technical Information Center (1996), https://apps.dtic.mil/sti/pdfs/ADA311320.pdf
8. Z. Zeng, X. Luo, A. Xia, Y. Zhang, C. Sun. Optik, 125, N 15 (2014) 4092—4097, https://doi.org/10.1016/j.ijleo.2014.01.106
9. T. A. Rhoadarmer, J. R. P. Angel. Appl. Opt., 40, N 18 (2001) 2946, https://doi.org/10.1364/ao.40.002946
10. R. Rampy, D. Gavel, D. Dillon, S. Thomas. Appl. Opt., 51, N 36 (2012) 8769, https://doi.org/10.1364/ao.51.008769
11. S. V. Mantravadi, T. A. Rhoadarmer, R. S. Glas. Proc. SPIE, 5553, Advanced Wavefront Control: Methods, Devices, and Applications II (2004), https://doi.org/10.1117/12.559933
12. S. Thomas. Proc. SPIE, 5490,Advancementsin Adaptive Optics (2004), https://doi.org/10.1117/12.549858
13. A. Dixit, V. Porwal, A. Kumar, S. K. Mishra. Systematic Characterization of Near-Index-Matched Optics Based Atmospheric Turbulence Simulator. MAPAN, 35, N 2 (2020) 221—232, https://doi.org/10.1007/s12647-020-00370-9
14. E. Pinna, A. T. Puglisi, S. Esposito, A. Tozzi, A. V. Goncharov. Proc. SPIE, 5490, Advancements in Adaptive Optics (2004), https://doi.org/10.1117/12.551964
15. S. R. Lange, R. W. Knowlden, T. S. Turner Jr., W. W. Metheny. Proc. SPIE, 0193, Optical Systems in Engineering I (1979), https://doi.org/10.1117/12.957895
16. J. Moreno Raso, J. Serrano, H. Argelaguet, M. Lamensans, J. González, A. Martín, C. Pastor, G. Ramos, T. Belenguer, A. Sánchez, L. F. Rodríguez-Ramos. Proc. SPIE, 7736, Adaptive Optics Systems II, 77364B (2010), https://doi.org/10.1117/12.856252
17. E. Marchetti, R. Ragazzoni, J. Farinato, A. Ghedina. Proc. SPIE, 2871, Optical Telescopes of Today and Tomorrow (1997), https://doi.org/10.1117/12.268975
18. S. Hippler, F. Hormuth, D. J. Butler, W. Brandner, T. Henning. Opt. Express, 14, N 22 (2006) 10139, https://doi.org/10.1364/oe.14.010139
19. A. A. Ryzhevich. Lightmetry: Proc. SPIE, Pultusk, Poland, 5–9 June 2000, 4517, Ed. M. Pluta, SPIE (2000) 16—21
20. A. A. Ryzhevich, I. V. Balykin, T. A. Zheleznyakova. J. Appl. Spectr., 85, N 1 (2018) 134—142
21. A. A. Ryzhevich, I. V. Balykin, T. A. Zheleznyakova. J. Appl. Spectr., 88, N 5 (2021) 1020—1034
22. А. А. Ryzhevich. J. Opt. Technol., 68, N 3 (2001) 208
23. [23] G. I. Taylor. Proc. R. Soc. Lond. A, 164 (1938) 476—490
24. N. S. Kazak, E. G. Katranzhi, A. A. Ryzhevich. J. Appl. Spectr., 69, № 2 (2002) 279—285, https://doi.org/10.1023/A:1016105706082
Review
For citations:
Ryzhevich A.A., Balykin I.V., Zheleznyakova T.A., Kazak N.S. Influence of the Atmosphere Turbulence Simulator on the Parameters of the Bessel Light Beam at Different Configurations of the Optical Setup. Zhurnal Prikladnoii Spektroskopii. 2025;92(2):152-160. (In Russ.)