Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Influence of the Atmosphere Turbulence Simulator on the Parameters of the Bessel Light Beam at Different Configurations of the Optical Setup

Abstract

Influence of media containing optical inhomogeneities on the Bessel light beam (BLB) parameters has been studied comprehensively. BLB have been formed by optical setup in two configurations. In configuration I Gaussian (or Laguerre-Gaussian) laser beam is propagating through atmospheric turbulence simulator (ATS). The resulting distorted beam is then used to form the BLB with help of an axicon. In the case of incident Gaussian beam the BLB of the zero order is formed, in the case of Laguerre-Gaussian beam the first order BLB is formed. In configuration II BLB of the zero or the first order is propagating through ATS. Original Gaussian and Laguerre-Gaussian beams correspondingly are undisturbed in this case. The presence of a turbulence of inner scale lower than the diameter of propagating through it laser beam causes significant change in BLB quality parameters in both configurations. The most sensitive is the parameter of constancy, the least sensitive is the parameter of roundness. With the increase of a distance from axicon the sensitivity of all quality parameters increases. Large scale inhomogeneities, that are significantly larger than the diameter of propagating through ATS beam, cause substantial change in beam axis location. Due to the fact, that BLB of the zero order is much easily formed than BLB of the first order, it is optimal to use BLB of the zero order to investigate the turbulence. For unambiguity and more clear interpretation of the obtained results, it is rational to use configuration I with Gaussian beam. The results obtained can be used for the development of analyzers (detectors) of heterogeneity in liquid or gaseous media in natural conditions and in industry, as well as for the quality assessment of extended transparent products.

About the Authors

A. A. Ryzhevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus; Belarusian State University
Belarus

Minsk



I. V. Balykin
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



T. A. Zheleznyakova
Belarusian State University
Belarus

Minsk



N. S. Kazak
SSPA “Optics, Optoelectronics and Laser Technology”
Belarus

Minsk



References

1. Д. Стробен. Распространение лазерного пучка в атмосфере, пер. с англ., Мир, Москва (1981)

2. L. C. Andrews, R. L. Phillips. Laser Beam Propagation Through Random Media, 2nd ed., SPIE (2005), https://doi.org/10.1117/3.626196

3. A. Tunick. Opt. Express, 16, N 19 (2008) 14645, https://doi.org/10.1364/oe.16.014645

4. А. Н. Колмогоров. Докл. АН СССР, 30, № 4 (1941)

5. H. G. Booker, J. A. Ferguson, H. O. Vats. J. Atm. Terrestrial Phys., 47, N 4 (1985) 381—399, https://doi.org/10.1016/0021-9169(85)90018-2

6. L. C. Andrews, R. L. Phillips, A. R. Weeks. Waves Random Media, 7, N 2 (1997) 229—244, https://doi.org/10.1088/0959-7174/7/2/005

7. S. S. Chesnokov, V. P. Kandidov, V. I. Shmalhausen, V. V. Shuvalov. Numerical/Optical Simulation of Laser Beam Propagation Through Atmospheric Turbulence, Defense Technical Information Center (1996), https://apps.dtic.mil/sti/pdfs/ADA311320.pdf

8. Z. Zeng, X. Luo, A. Xia, Y. Zhang, C. Sun. Optik, 125, N 15 (2014) 4092—4097, https://doi.org/10.1016/j.ijleo.2014.01.106

9. T. A. Rhoadarmer, J. R. P. Angel. Appl. Opt., 40, N 18 (2001) 2946, https://doi.org/10.1364/ao.40.002946

10. R. Rampy, D. Gavel, D. Dillon, S. Thomas. Appl. Opt., 51, N 36 (2012) 8769, https://doi.org/10.1364/ao.51.008769

11. S. V. Mantravadi, T. A. Rhoadarmer, R. S. Glas. Proc. SPIE, 5553, Advanced Wavefront Control: Methods, Devices, and Applications II (2004), https://doi.org/10.1117/12.559933

12. S. Thomas. Proc. SPIE, 5490,Advancementsin Adaptive Optics (2004), https://doi.org/10.1117/12.549858

13. A. Dixit, V. Porwal, A. Kumar, S. K. Mishra. Systematic Characterization of Near-Index-Matched Optics Based Atmospheric Turbulence Simulator. MAPAN, 35, N 2 (2020) 221—232, https://doi.org/10.1007/s12647-020-00370-9

14. E. Pinna, A. T. Puglisi, S. Esposito, A. Tozzi, A. V. Goncharov. Proc. SPIE, 5490, Advancements in Adaptive Optics (2004), https://doi.org/10.1117/12.551964

15. S. R. Lange, R. W. Knowlden, T. S. Turner Jr., W. W. Metheny. Proc. SPIE, 0193, Optical Systems in Engineering I (1979), https://doi.org/10.1117/12.957895

16. J. Moreno Raso, J. Serrano, H. Argelaguet, M. Lamensans, J. González, A. Martín, C. Pastor, G. Ramos, T. Belenguer, A. Sánchez, L. F. Rodríguez-Ramos. Proc. SPIE, 7736, Adaptive Optics Systems II, 77364B (2010), https://doi.org/10.1117/12.856252

17. E. Marchetti, R. Ragazzoni, J. Farinato, A. Ghedina. Proc. SPIE, 2871, Optical Telescopes of Today and Tomorrow (1997), https://doi.org/10.1117/12.268975

18. S. Hippler, F. Hormuth, D. J. Butler, W. Brandner, T. Henning. Opt. Express, 14, N 22 (2006) 10139, https://doi.org/10.1364/oe.14.010139

19. A. A. Ryzhevich. Lightmetry: Proc. SPIE, Pultusk, Poland, 5–9 June 2000, 4517, Ed. M. Pluta, SPIE (2000) 16—21

20. A. A. Ryzhevich, I. V. Balykin, T. A. Zheleznyakova. J. Appl. Spectr., 85, N 1 (2018) 134—142

21. A. A. Ryzhevich, I. V. Balykin, T. A. Zheleznyakova. J. Appl. Spectr., 88, N 5 (2021) 1020—1034

22. А. А. Ryzhevich. J. Opt. Technol., 68, N 3 (2001) 208

23. [23] G. I. Taylor. Proc. R. Soc. Lond. A, 164 (1938) 476—490

24. N. S. Kazak, E. G. Katranzhi, A. A. Ryzhevich. J. Appl. Spectr., 69, № 2 (2002) 279—285, https://doi.org/10.1023/A:1016105706082


Review

For citations:


Ryzhevich A.A., Balykin I.V., Zheleznyakova T.A., Kazak N.S. Influence of the Atmosphere Turbulence Simulator on the Parameters of the Bessel Light Beam at Different Configurations of the Optical Setup. Zhurnal Prikladnoii Spektroskopii. 2025;92(2):152-160. (In Russ.)

Views: 20


ISSN 0514-7506 (Print)