Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

High-Temperature Study in situ of Interaction between Lanthanum Oxide and FLiNaK Fluoride Melt by Raman Spectroscopy

Abstract

Using in situ Raman spectroscopy, a chemical mechanism for the interaction of lanthanum oxide with a molten fluoride mixture FLiNaK, promising for the use in molten salt nuclear reactors, has been established. High-temperature spectral studies, supplemented with the results of X-ray diffraction and thermodynamic modeling, proved the occurrence of an irreversible heterogeneous reaction La2O3s + 2LiFsol→2LaOFs + Li2Osol. It was shown that in the fluoride system under study, the reaction product (lanthanum oxyfluoride LaOF) forms hexagonal (R3m) and tetragonal (P4/nmm) crystalline modifications. The necessary information on the thermal behavior of vibration modes of lanthanum oxide La2O3 in the range of 20–600 ºС, and the mechanism and its interaction with water vapor in the air atmosphere were obtained.

About the Authors

I. D. Zakiryanova
Institute of High-Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences
Russian Federation

Ekaterinburg



P. N. Mushnikov
Institute of High-Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. M. Rosenthal, P. Kasten, R. Briggs. Nucl. Appl. Technol., 8 (1970) 107—117, https://doi.org/10.13182/nt70-a28619

2. Jérôme Serp, Michel Allibert, Ondřej Beneš, Sylvie Delpech, Olga Feynberg, Véronique Ghetta, Daniel Heuer, David Holcomb, Victor Ignatiev, Jan Leen Kloosterman, Lelio Luzzi, Elsa MerleLucotte, Jan Uhlíř, Ritsuo Yoshioka, Dai Zhimin. Prog. Nucl. Energy, 77 (2014) 308—319, https://doi.org/10.1016/j.pnucene.2014.02.014

3. V. V. Ignatiev, M. V. Kormilitsyn, L. A. Kormilitsyna, Yu. M. Semchenkov, Yu. S. Fedorov, O. S. Feinberg, O. V. Kryukov, A. V. Khaperskaya. Sov. At. Energy, 125 (2019) 279—283, https://doi.org/10.1007/s10512-019-00481-w

4. B. Laurenty. The LM-LS Experiment: Investigating Corrosion Control in Liquid Fluoride Salts by Liquid Alkali Metal, Report UCBTH-06-002, University California, Berkeley, http://fhr.nuc.berkeley.edu/wpcontent/uploads/2014/10/06-002_B.Laurenty-MS-report.pdf

5. J. Uhlíř. In: Book Molten Salt Reactors and Thorium Energy, Ed. T. Dolan, Woodhead Publishing, Cambridge, UK (2017) 209—230, https://doi.org/10.1016/b978-0-08-101126-3.00008-7

6. Eduard Karfidov, Evgueniya Nikitina, Maxim Erzhenkov, Konstantin Seliverstov, Pavel Chernenky, Albert Mullabaev, Vladimir Tsvetov, Peter Mushnikov, Kirill Karimov, Natalia Molchanova, Alexandra Kuznetsova. Materials, 15 (2022) 761—767, https://doi.org/10.3390/ma15030761

7. R. Pshenichny, A. Omelchuk. Russ. J. Inorg. Chem., 57 (2012) 115—119, https://doi.org/10.1134/s0036023612010160

8. S. Berul, N. Voskresenskaya. Журн. неорг. химии, 8 (1963) 1431—1436

9. [9] E. Stefanidaki, C. Hasiotis, C. Kontoyannis. Electrochim. Acta, 46 (2001) 2665—2670, https://doi.org/10.1016/S0013-4686(01)00489-3

10. Vesna S. Cvetković, Dominic Feldhaus, Nataša M. Vukićević, Tanja S. Barudžija, Bernd Friedrich, Jovan N. Jovićević. Metals, 10 (2020) 576—581, https://doi.org/10.3390/met10050576

11. Xiaoling Guo, Zhi Sun, Jilt Sietsma, Bart Blanpain, Muxing Guo, Yongxiang Yang. Ind. Eng. Chem. Res., 57 (2018) 1380—1388, https://doi.org/10.1021/acs.iecr.7b04125

12. O. Takeda, K. Nakano, F. Kobayashi. J. Sust. Metall., 8 (2022) 1498—1508, https://doi.org/10.1007/s40831-022-00617-6

13. M. Ambrová, J. Jurišová, A. Sýkorová, D. Uher. Chem. Papers, 62 (2008) 154—159, https://doi.org/10.2478/s11696-008-0005-3

14. M. Ambrová, J. Jurišová, V. Danielik, J. Gabčova. J. Thermal Anal. Calorim., 91 (2008) 569—573, https://doi.org/10.1007/s10973-007-8533-6

15. Q. Yang, J. Ge, Y. Wang, J. Zhang. Nuclear Technol., 206 (2020) 1769—1777, https://doi.org/10.1080/00295450.2020.1757976

16. I. D. Zakiryanova, P. N. Mushnikov, E. V. Nikolaeva, Y. P. Zaikov. Processes, 11 (2023) 988, https://doi.org/10.3390/pr11040988

17. I. D. Zakiryanova. J. Appl. Spectr., 88 (2021) 755—760, https://doi.org/10.1007/s10812-021-01236-x

18. I. D. Zakir’yanova. J. Appl. Spectr., 89 (2022) 443—449, https://doi.org/10.1007/s10812-022-01378-6

19. I. D. Zakir’yanova, P. A. Arkhipov, D. O. Zakir’yanov. J. Appl. Spectr., 82 (2016) 301—304, https://doi.org/10.1007/s10812-016-0205-5

20. I. D. Zakir’yanova, E. V. Nikolaeva, A. L. Bove. J. Appl. Spectr., 81 (2015) 919—923, https://doi.org/10.1007/s10812-015-0029-8

21. P. A. Arkhipov, I. D. Zakir’yanova, A. S. Kholkina, I. V. Korzun, A. O. Khudorozhkova. J. Electrochem. Soc., 164 (2017) H5322—H5326, https://doi.org/10.1149/2.0461708jes

22. A. Kataev, O. Tkacheva, I. Zakiryanova, A. Apisarov, A. Dedyukhin, Y. Zaikov. J. Mol. Liq., 231 (2017) 149—153, https://doi.org/10.1016/j.molliq.2017.02.021

23. G. Zong, Z. Zhang, J. Sun, J. Xiao. J. Fluor. Chem., 197 (2017) 134—141, https://doi.org/10.1016/j.jfluchem.2017.03.006

24. J. Derek, Y. Toshinobu, J. Janz. J. Chem. Eng. Data, 27 (1982) 366—367

25. В. А. Кочедыков, И. Д. Закирьянова, И. В. Корзун. Аналитика и контроль, 1 (2005) 58—63, http://elar.urfu.ru/handle/10995/58914

26. S. Boldish, W. White. Spectrochim. Acta, 35A (1979) 1235—1242, https://doi.org/10.1016/0584-8539(79)80204-4

27. P. A. Arkhipov, I. D. Zakiryanova, A. S. Kholkina, A. V. Bausheva, A. O. Khudorozhkova. Z. Naturforsch., 70 (2015) 851—858, https://doi.org/10.1515/zna-2015-0273

28. В. А. Кочедыков, И.Д. Закирьянова, Л. А. Акашев. Аналитика и контроль, 10 (2006) 172—174, http://elar.urfu.ru/handle/10995/58134

29. J. Cui, G. A. Hope. J. Spectrosc. (2015) 940172, http://dx.doi.org/10.1155/2015/940172

30. J. Hölsä, E. Säilynoja, H. Rahiala. Polyhedron., 16 (1997) 3421—3427, https://doi.org/10.1016/s0277-5387(97)00065-x

31. Emille M. Rodrigues, Ernesto R. Souza, Jorge H. S. K. Monteiro, Rafael D. L. Gaspar, Italo O. Mazalia, Fernando A. Sigoli. J. Mater. Chem., 22 (2012) 24109, https://doi.org/10.1039/c2jm34901a

32. D. Zakir’yanov. Phys. Chem. Liquids, 63, N 1 (2024) 22—30, https://doi.org/10.1080/00319104.2024.2349767 [33]

33. http://www.chemistry-software.com


Review

For citations:


Zakiryanova I.D., Mushnikov P.N. High-Temperature Study in situ of Interaction between Lanthanum Oxide and FLiNaK Fluoride Melt by Raman Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2025;92(2):170-177. (In Russ.)

Views: 29


ISSN 0514-7506 (Print)