

High-Temperature Study in situ of Interaction between Lanthanum Oxide and FLiNaK Fluoride Melt by Raman Spectroscopy
Abstract
Using in situ Raman spectroscopy, a chemical mechanism for the interaction of lanthanum oxide with a molten fluoride mixture FLiNaK, promising for the use in molten salt nuclear reactors, has been established. High-temperature spectral studies, supplemented with the results of X-ray diffraction and thermodynamic modeling, proved the occurrence of an irreversible heterogeneous reaction La2O3s + 2LiFsol→2LaOFs + Li2Osol. It was shown that in the fluoride system under study, the reaction product (lanthanum oxyfluoride LaOF) forms hexagonal (R3m) and tetragonal (P4/nmm) crystalline modifications. The necessary information on the thermal behavior of vibration modes of lanthanum oxide La2O3 in the range of 20–600 ºС, and the mechanism and its interaction with water vapor in the air atmosphere were obtained.
About the Authors
I. D. ZakiryanovaRussian Federation
Ekaterinburg
P. N. Mushnikov
Russian Federation
Ekaterinburg
References
1. M. Rosenthal, P. Kasten, R. Briggs. Nucl. Appl. Technol., 8 (1970) 107—117, https://doi.org/10.13182/nt70-a28619
2. Jérôme Serp, Michel Allibert, Ondřej Beneš, Sylvie Delpech, Olga Feynberg, Véronique Ghetta, Daniel Heuer, David Holcomb, Victor Ignatiev, Jan Leen Kloosterman, Lelio Luzzi, Elsa MerleLucotte, Jan Uhlíř, Ritsuo Yoshioka, Dai Zhimin. Prog. Nucl. Energy, 77 (2014) 308—319, https://doi.org/10.1016/j.pnucene.2014.02.014
3. V. V. Ignatiev, M. V. Kormilitsyn, L. A. Kormilitsyna, Yu. M. Semchenkov, Yu. S. Fedorov, O. S. Feinberg, O. V. Kryukov, A. V. Khaperskaya. Sov. At. Energy, 125 (2019) 279—283, https://doi.org/10.1007/s10512-019-00481-w
4. B. Laurenty. The LM-LS Experiment: Investigating Corrosion Control in Liquid Fluoride Salts by Liquid Alkali Metal, Report UCBTH-06-002, University California, Berkeley, http://fhr.nuc.berkeley.edu/wpcontent/uploads/2014/10/06-002_B.Laurenty-MS-report.pdf
5. J. Uhlíř. In: Book Molten Salt Reactors and Thorium Energy, Ed. T. Dolan, Woodhead Publishing, Cambridge, UK (2017) 209—230, https://doi.org/10.1016/b978-0-08-101126-3.00008-7
6. Eduard Karfidov, Evgueniya Nikitina, Maxim Erzhenkov, Konstantin Seliverstov, Pavel Chernenky, Albert Mullabaev, Vladimir Tsvetov, Peter Mushnikov, Kirill Karimov, Natalia Molchanova, Alexandra Kuznetsova. Materials, 15 (2022) 761—767, https://doi.org/10.3390/ma15030761
7. R. Pshenichny, A. Omelchuk. Russ. J. Inorg. Chem., 57 (2012) 115—119, https://doi.org/10.1134/s0036023612010160
8. S. Berul, N. Voskresenskaya. Журн. неорг. химии, 8 (1963) 1431—1436
9. [9] E. Stefanidaki, C. Hasiotis, C. Kontoyannis. Electrochim. Acta, 46 (2001) 2665—2670, https://doi.org/10.1016/S0013-4686(01)00489-3
10. Vesna S. Cvetković, Dominic Feldhaus, Nataša M. Vukićević, Tanja S. Barudžija, Bernd Friedrich, Jovan N. Jovićević. Metals, 10 (2020) 576—581, https://doi.org/10.3390/met10050576
11. Xiaoling Guo, Zhi Sun, Jilt Sietsma, Bart Blanpain, Muxing Guo, Yongxiang Yang. Ind. Eng. Chem. Res., 57 (2018) 1380—1388, https://doi.org/10.1021/acs.iecr.7b04125
12. O. Takeda, K. Nakano, F. Kobayashi. J. Sust. Metall., 8 (2022) 1498—1508, https://doi.org/10.1007/s40831-022-00617-6
13. M. Ambrová, J. Jurišová, A. Sýkorová, D. Uher. Chem. Papers, 62 (2008) 154—159, https://doi.org/10.2478/s11696-008-0005-3
14. M. Ambrová, J. Jurišová, V. Danielik, J. Gabčova. J. Thermal Anal. Calorim., 91 (2008) 569—573, https://doi.org/10.1007/s10973-007-8533-6
15. Q. Yang, J. Ge, Y. Wang, J. Zhang. Nuclear Technol., 206 (2020) 1769—1777, https://doi.org/10.1080/00295450.2020.1757976
16. I. D. Zakiryanova, P. N. Mushnikov, E. V. Nikolaeva, Y. P. Zaikov. Processes, 11 (2023) 988, https://doi.org/10.3390/pr11040988
17. I. D. Zakiryanova. J. Appl. Spectr., 88 (2021) 755—760, https://doi.org/10.1007/s10812-021-01236-x
18. I. D. Zakir’yanova. J. Appl. Spectr., 89 (2022) 443—449, https://doi.org/10.1007/s10812-022-01378-6
19. I. D. Zakir’yanova, P. A. Arkhipov, D. O. Zakir’yanov. J. Appl. Spectr., 82 (2016) 301—304, https://doi.org/10.1007/s10812-016-0205-5
20. I. D. Zakir’yanova, E. V. Nikolaeva, A. L. Bove. J. Appl. Spectr., 81 (2015) 919—923, https://doi.org/10.1007/s10812-015-0029-8
21. P. A. Arkhipov, I. D. Zakir’yanova, A. S. Kholkina, I. V. Korzun, A. O. Khudorozhkova. J. Electrochem. Soc., 164 (2017) H5322—H5326, https://doi.org/10.1149/2.0461708jes
22. A. Kataev, O. Tkacheva, I. Zakiryanova, A. Apisarov, A. Dedyukhin, Y. Zaikov. J. Mol. Liq., 231 (2017) 149—153, https://doi.org/10.1016/j.molliq.2017.02.021
23. G. Zong, Z. Zhang, J. Sun, J. Xiao. J. Fluor. Chem., 197 (2017) 134—141, https://doi.org/10.1016/j.jfluchem.2017.03.006
24. J. Derek, Y. Toshinobu, J. Janz. J. Chem. Eng. Data, 27 (1982) 366—367
25. В. А. Кочедыков, И. Д. Закирьянова, И. В. Корзун. Аналитика и контроль, 1 (2005) 58—63, http://elar.urfu.ru/handle/10995/58914
26. S. Boldish, W. White. Spectrochim. Acta, 35A (1979) 1235—1242, https://doi.org/10.1016/0584-8539(79)80204-4
27. P. A. Arkhipov, I. D. Zakiryanova, A. S. Kholkina, A. V. Bausheva, A. O. Khudorozhkova. Z. Naturforsch., 70 (2015) 851—858, https://doi.org/10.1515/zna-2015-0273
28. В. А. Кочедыков, И.Д. Закирьянова, Л. А. Акашев. Аналитика и контроль, 10 (2006) 172—174, http://elar.urfu.ru/handle/10995/58134
29. J. Cui, G. A. Hope. J. Spectrosc. (2015) 940172, http://dx.doi.org/10.1155/2015/940172
30. J. Hölsä, E. Säilynoja, H. Rahiala. Polyhedron., 16 (1997) 3421—3427, https://doi.org/10.1016/s0277-5387(97)00065-x
31. Emille M. Rodrigues, Ernesto R. Souza, Jorge H. S. K. Monteiro, Rafael D. L. Gaspar, Italo O. Mazalia, Fernando A. Sigoli. J. Mater. Chem., 22 (2012) 24109, https://doi.org/10.1039/c2jm34901a
32. D. Zakir’yanov. Phys. Chem. Liquids, 63, N 1 (2024) 22—30, https://doi.org/10.1080/00319104.2024.2349767 [33]
33. http://www.chemistry-software.com
Review
For citations:
Zakiryanova I.D., Mushnikov P.N. High-Temperature Study in situ of Interaction between Lanthanum Oxide and FLiNaK Fluoride Melt by Raman Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2025;92(2):170-177. (In Russ.)