

Magnetic Nanocomposites Fe3O4/FeOOH as a Promising Basis for Advanced Oxidation Processes (Fenton Reaction)
Abstract
Magnetic nanocomposite particles Fe3O4/α-FeOOH were synthesized by the method of alkaline coprecipitation from aqueous solutions of salts of di- and trivalent iron. The phase composition and magnetic characteristics of the nanocomposite particles were studied in comparison with nanoparticles of single-phase Fe3O4 using the methods of X-ray structural analysis, Mössbauer spectroscopy and vibration magnetometry. The conducted studies made it possible to determine the sizes of the obtained particles (the average diameters are in the range from 4 to 21 nm) and the Debye temperature, which was ΘD = 273±19 and 327±45 K for Fe3O4 and Fe3O4/FeOOH, respectively. The obtained magnetic characteristics of Fe3O4/FeOOH (Ms ≈ 32 emu/g at T = 300 K) allow using this composite material as a reagent in processes of improved oxidation followed by magnetic decantation.
About the Authors
Y. D. MitskevichBelarus
Minsk
M. M. Degtyarik
Belarus
Minsk
A. A. Kharchanka
Belarus
Minsk
M. V. Bushinsky
Belarus
Minsk
Yu. A. Fedotova
Belarus
Minsk
E. S. Voropay
Belarus
Minsk
References
1. Sifau A. Adejumo, Mary B. Ogundiran, Adeniyi O. Togun. J. Environ. Chem. Eng., 6, N 4 (2018) 4809—4819, https://doi.org/10.1016/j.jece.2018.07.027
2. Ping Zhao, Bo Jin, Qingchun Zhang, Rufang Peng. Appl. Surf. Sci., 586 (2022) 152792, https://doi.org/10.1016/j.apsusc.2022.152792.
3. Dong Wan, Jie Wang, Tong Chen, Weiming Xiang. Water Res., 219 (2022) 118552, https://doi.org/10.1016/j.watres.2022.118552
4. Chen Wang, Peng Shi, Zhaobo Wang, Rui Guo, Junhua You, Hangzhou Zhang. J. Environ. Chem. Eng., 11, N 6 (2023) 111269, https://doi.org/10.1016/j.jece.2023.111269
5. Jianlong Wang, Run Zhuan. Sci. Total Environ., 701 (2020) 135023, https://doi.org/10.1016/j.scitotenv.2019.135023
6. D. Syam Babu, Vartika Srivastava, P. V. Nidheesh, M. Suresh Kumar. Sci. Total Environ., 696 (2019) 133961, https://doi.org/10.1016/j.scitotenv.2019.133961
7. J. Fedotova. Phys. Status Solidi (b), 259, N 8 (2022) 2100653, https://doi.org/10.1002/pssb.202100653
8. Ph. H. Linh, J. Fedotova, S. Vorobyova, L. H. Nguyen, Tr. Th. Huong, H. Nh. Nguyen, Thi Ng. Anh Nguyen, Anh Son Hoang, Q. Anh Nguyen, U. Gumiennik, A. Konakov, M. Bushinskij, P. Zukowski, T. N. Koltunowicz. Mat. Sci. Eng. B, 295 (2023) 116571, https://doi.org/10.1016/j.mseb.2023.116571
9. Ling Zhao, Zhi-Rong Lin, Xiao-Hong Ma, Yuan-Hua Dong. Chem. Eng. J., 352 (2018) 343—351, https://doi.org/10.1016/j.cej.2018.07.035
10. Bettina Zinder, Gerhard Furrer, Werner Stumm. Geochim. Cosmochim. Acta, 50, N 9 (1986) 1861—1869, https://doi.org/10.1016/0016-7037(86)90244-9
11. Ming-Chun Lu, Jong-Nan Chen, Cheu-Ping Chang. J. Heat Transfer, 65, N 3 (1999) 277—288, https://doi.org/10.1016/S0304-3894(98)00268-4
12. Z. M. Li, P. J. Shea, S. D. Comfort. Chemosphere, 36, N 8 (1998) 1849—1865, https://doi.org/10.1016/S0045-6535(97)10073-X
13. Martin Sörensen, Fritz H. Frimmel. Water Res., 31, N 11 (1997) 2885—2891, https://doi.org/10.1016/S0043-1354(97)00143-7
14. K. Lagarec, D. G. Rancourt. Recoil-Mössbauer Spectral Analysis Software for Windows. University of Ottawa, Ottawa, ON 43 (1998)
15. D. G. Rancourt, J. Y. Ping. Nucl. Instrum. Methods Phys. Res. B, 58 (1991) 85
16. Powder Diffraction File [Электронный ресурс]: PDF-2 database/The International Centre for Diffraction Data. Release 2024. Электрон. дан. (1 DVD-ROM). Mode of access: http://www.icdd.com
17. A. L. Patterson. Phys. Rev., 56, N 10 (1939) 978—982
18. C. E. Johnson, J. A. Johnson, H. Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact., 237, N 27 (2016), https://doi.org/10.1007/s10751-016-1277-6
19. E. Kuchma, St. Kubrin, A. Soldatov. Biomed., 6 (2018) 78, https://doi.org/10.3390/biomedicines6030078
20. P. H. Linh, N. X. Phuc, L. V. Hong. J. Magnetism and Magnetic Materials, 460 (2018) 128—136
21. A. I. Figueroa. Physics Proc., 75 (2015) 1050—1057, https://doi.org/10.1016/j.phpro.2015.12.174
22. M. Iizumi. Struct. Sci, 38, N 8 (1982) 2121—2133, https://doi.org/10.1107/S0567740882008176
23. I. Dézsi. J. Аppl. Phys., 103, N 10 (2008), https://doi.org/10.1063/1.2937252
24. В. Г. Костишин, Б. К. Остафийчук, В. В. Мокляк, А. В. Нуриев. Изв. вузов. Материалы электронной техники, 4 (2013) 22—29, https://doi.org/10.17073/1609-3577-2013-4-22-29
25. Sei J. Oh, D. C. Cook, H. E. Townsend. Hyper. Interact., 112 (1998) 59—66, https://doi.org/10.1023/A:1011076308501
26. Kawauchi Taizo, Miura Yoshio, Asakawa Kanta, Fukutani Katsuyuki. J. Phys. Commun., 4, N 11 (2020) 115001, https://dx.doi.org/10.1088/2399-6528/abc8da
27. M. J. Navrotsky, A. Woodfield, B. F. Lang, B. E. Boerio-Goates, Jr., R. A. Fisher. J. Low Temp. Phys., 130 (2003) 69—76, https://doi.org/10.1023/a:1021897402158
28. J. W. Niemantsverdriet, C. F. J. Flipse, B. Selman, J. J. Van Loef, A. M. Van der Kraan. Phys. Lett. A, 100, N 8 (1984) 445—447, https://doi.org/10.1016/0375-9601(84)90641-8
29. X. Batlle. Appl. Phys., 74, N 5 (1993) 3333—3341
30. J. Shebha Anandhi, T. Arun, R. J. Joseyphu. Phys. B: Cond. Matter, 598, 1 (2020) 412429, https://doi.org/10.1016/j.physb.2020.412429
31. С. В. Столяр, С. В. Комогорцев, Л. А. Чеканова, Р. Н. Ярославцев, О. А. Баюков, Д. А. Великанов, М. Н. Волочаев, Е. В. Черемискина, M. Sh. Bairmani, П. Е. Ерошенко, Р. С. Исхаков. Письма в ЖТФ, 45, № 17 (2019) 28—30, https://doi.org/10.21883/PJTF.2019.17.48220.17886
32. A.-F. Lehlooh, S. H. Mahmood. J. Magn. Magn. Mater., 151, N 1-2 (1995) 163—166, https://doi.org/10.1016/0304-8853(95)00385-1
33. П. П. Горбик, В. Н. Мищенко, Н. В. Абрамов, Д. Г. Усов, Ю. Н. Трощенков. Химия, физика и технология поверхности, № 16 (2010) 165—176
34. Carlos Martinez-Boubeta, Konstantinos Simeonidis, Antonios Makridis, Makis Angelakeris, Oscar Iglesias, Pablo Guardia, Andreu Cabot, Lluis Yedra, Sonia Estradé, Francesca Peiró, Zineb Saghi, Paul A. Midgley, Iván Conde-Leborán, David Serantes, Daniel Baldomir. Sci. Rep., 3 (2013) 1652, https://doi.org/10.1038/srep01652
35. C. Martínez-Boubeta, K. Simeonidis, M. Angelakeris, N. Pazos-Pérez, M. Giersig, A. Delimitis, L. Nalbandian, V. Alexandrakis, D. Niarchos. Phys. Rev. B, 74 (2006) 054430, https://doi.org/10.1103/PhysRevB.74.054430
36. S. Disch, E. Wetterskog, R. P. Hermann, A. Wiedenmann, U. Vainio, G. Salazar-Alvarez, L. Bergström, Th. Brückel. New J. Phys., 14 (2012), https://doi.org/10.1088/1367-2630/14/1/013025
37. Seung-hyun Noh, Wonjun Na, Jung-tak Jang, Jae-Hyun Lee, Eun Jung Lee, Seung Ho Moon, Yongjun Lim, Jeon-Soo Shin, Jinwoo Cheon. Nano Lett., 12, N 7 (2012) 3716—3721, https://doi.org/10.1021/nl301499u
38. С. В. Вонсовский. Магнетизм, Москва, Наука (1971)
39. W. Zhu, J. Winterstein, I. Maimon, Q. Yin, L. Yuan, A. N. Kolmogorov, R. Sharma, G. Zhou. Phys. Chem. C, 120, N 27 (2016) 14854—14862, https://doi.org/10.1021/acs.jpcc.6b02033
40. K. Persson. Materials Data on Fe3O4 (SG:227) by Materials Project. United States, doi: 10.17188/1194194 (2015), https://legacy.materialsproject.org/materials/mp-19306/
Supplementary files
Review
For citations:
Mitskevich Y.D., Degtyarik M.M., Kharchanka A.A., Bushinsky M.V., Fedotova Yu.A., Voropay E.S. Magnetic Nanocomposites Fe3O4/FeOOH as a Promising Basis for Advanced Oxidation Processes (Fenton Reaction). Zhurnal Prikladnoii Spektroskopii. 2025;92(4):492-504. (In Russ.)