Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Magnetic Nanocomposites Fe3O4/FeOOH as a Promising Basis for Advanced Oxidation Processes (Fenton Reaction)

Abstract

Magnetic nanocomposite particles Fe3O4/α-FeOOH were synthesized by the method of alkaline coprecipitation from aqueous solutions of salts of di- and trivalent iron. The phase composition and magnetic characteristics of the nanocomposite particles were studied in comparison with nanoparticles of single-phase Fe3O4 using the methods of X-ray structural analysis, Mössbauer spectroscopy and vibration magnetometry. The conducted studies made it possible to determine the sizes of the obtained particles (the average diameters are in the range from 4 to 21 nm) and the Debye temperature, which was ΘD = 273±19 and 327±45 K for Fe3O4 and Fe3O4/FeOOH, respectively. The obtained magnetic characteristics of Fe3O4/FeOOH (Ms ≈ 32 emu/g at T = 300 K) allow using this composite material as a reagent in processes of improved oxidation followed by magnetic decantation.

About the Authors

Y. D. Mitskevich
Belarusian State University; Research Institute for Nuclear Problems of the Belarusian State University
Belarus

Minsk



M. M. Degtyarik
Research Institute of Physical and Chemical Problems of the Belarusian State University
Belarus

Minsk



A. A. Kharchanka
Research Institute for Nuclear Problems of the Belarusian State University
Belarus

Minsk



M. V. Bushinsky
State Scientific and Practical Center of the National Academy of Sciences of Belarus for Materials Science
Belarus

Minsk



Yu. A. Fedotova
Research Institute for Nuclear Problems of the Belarusian State University
Belarus

Minsk



E. S. Voropay
Belarusian State University
Belarus

Minsk



References

1. Sifau A. Adejumo, Mary B. Ogundiran, Adeniyi O. Togun. J. Environ. Chem. Eng., 6, N 4 (2018) 4809—4819, https://doi.org/10.1016/j.jece.2018.07.027

2. Ping Zhao, Bo Jin, Qingchun Zhang, Rufang Peng. Appl. Surf. Sci., 586 (2022) 152792, https://doi.org/10.1016/j.apsusc.2022.152792.

3. Dong Wan, Jie Wang, Tong Chen, Weiming Xiang. Water Res., 219 (2022) 118552, https://doi.org/10.1016/j.watres.2022.118552

4. Chen Wang, Peng Shi, Zhaobo Wang, Rui Guo, Junhua You, Hangzhou Zhang. J. Environ. Chem. Eng., 11, N 6 (2023) 111269, https://doi.org/10.1016/j.jece.2023.111269

5. Jianlong Wang, Run Zhuan. Sci. Total Environ., 701 (2020) 135023, https://doi.org/10.1016/j.scitotenv.2019.135023

6. D. Syam Babu, Vartika Srivastava, P. V. Nidheesh, M. Suresh Kumar. Sci. Total Environ., 696 (2019) 133961, https://doi.org/10.1016/j.scitotenv.2019.133961

7. J. Fedotova. Phys. Status Solidi (b), 259, N 8 (2022) 2100653, https://doi.org/10.1002/pssb.202100653

8. Ph. H. Linh, J. Fedotova, S. Vorobyova, L. H. Nguyen, Tr. Th. Huong, H. Nh. Nguyen, Thi Ng. Anh Nguyen, Anh Son Hoang, Q. Anh Nguyen, U. Gumiennik, A. Konakov, M. Bushinskij, P. Zukowski, T. N. Koltunowicz. Mat. Sci. Eng. B, 295 (2023) 116571, https://doi.org/10.1016/j.mseb.2023.116571

9. Ling Zhao, Zhi-Rong Lin, Xiao-Hong Ma, Yuan-Hua Dong. Chem. Eng. J., 352 (2018) 343—351, https://doi.org/10.1016/j.cej.2018.07.035

10. Bettina Zinder, Gerhard Furrer, Werner Stumm. Geochim. Cosmochim. Acta, 50, N 9 (1986) 1861—1869, https://doi.org/10.1016/0016-7037(86)90244-9

11. Ming-Chun Lu, Jong-Nan Chen, Cheu-Ping Chang. J. Heat Transfer, 65, N 3 (1999) 277—288, https://doi.org/10.1016/S0304-3894(98)00268-4

12. Z. M. Li, P. J. Shea, S. D. Comfort. Chemosphere, 36, N 8 (1998) 1849—1865, https://doi.org/10.1016/S0045-6535(97)10073-X

13. Martin Sörensen, Fritz H. Frimmel. Water Res., 31, N 11 (1997) 2885—2891, https://doi.org/10.1016/S0043-1354(97)00143-7

14. K. Lagarec, D. G. Rancourt. Recoil-Mössbauer Spectral Analysis Software for Windows. University of Ottawa, Ottawa, ON 43 (1998)

15. D. G. Rancourt, J. Y. Ping. Nucl. Instrum. Methods Phys. Res. B, 58 (1991) 85

16. Powder Diffraction File [Электронный ресурс]: PDF-2 database/The International Centre for Diffraction Data. Release 2024. Электрон. дан. (1 DVD-ROM). Mode of access: http://www.icdd.com

17. A. L. Patterson. Phys. Rev., 56, N 10 (1939) 978—982

18. C. E. Johnson, J. A. Johnson, H. Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact., 237, N 27 (2016), https://doi.org/10.1007/s10751-016-1277-6

19. E. Kuchma, St. Kubrin, A. Soldatov. Biomed., 6 (2018) 78, https://doi.org/10.3390/biomedicines6030078

20. P. H. Linh, N. X. Phuc, L. V. Hong. J. Magnetism and Magnetic Materials, 460 (2018) 128—136

21. A. I. Figueroa. Physics Proc., 75 (2015) 1050—1057, https://doi.org/10.1016/j.phpro.2015.12.174

22. M. Iizumi. Struct. Sci, 38, N 8 (1982) 2121—2133, https://doi.org/10.1107/S0567740882008176

23. I. Dézsi. J. Аppl. Phys., 103, N 10 (2008), https://doi.org/10.1063/1.2937252

24. В. Г. Костишин, Б. К. Остафийчук, В. В. Мокляк, А. В. Нуриев. Изв. вузов. Материалы электронной техники, 4 (2013) 22—29, https://doi.org/10.17073/1609-3577-2013-4-22-29

25. Sei J. Oh, D. C. Cook, H. E. Townsend. Hyper. Interact., 112 (1998) 59—66, https://doi.org/10.1023/A:1011076308501

26. Kawauchi Taizo, Miura Yoshio, Asakawa Kanta, Fukutani Katsuyuki. J. Phys. Commun., 4, N 11 (2020) 115001, https://dx.doi.org/10.1088/2399-6528/abc8da

27. M. J. Navrotsky, A. Woodfield, B. F. Lang, B. E. Boerio-Goates, Jr., R. A. Fisher. J. Low Temp. Phys., 130 (2003) 69—76, https://doi.org/10.1023/a:1021897402158

28. J. W. Niemantsverdriet, C. F. J. Flipse, B. Selman, J. J. Van Loef, A. M. Van der Kraan. Phys. Lett. A, 100, N 8 (1984) 445—447, https://doi.org/10.1016/0375-9601(84)90641-8

29. X. Batlle. Appl. Phys., 74, N 5 (1993) 3333—3341

30. J. Shebha Anandhi, T. Arun, R. J. Joseyphu. Phys. B: Cond. Matter, 598, 1 (2020) 412429, https://doi.org/10.1016/j.physb.2020.412429

31. С. В. Столяр, С. В. Комогорцев, Л. А. Чеканова, Р. Н. Ярославцев, О. А. Баюков, Д. А. Великанов, М. Н. Волочаев, Е. В. Черемискина, M. Sh. Bairmani, П. Е. Ерошенко, Р. С. Исхаков. Письма в ЖТФ, 45, № 17 (2019) 28—30, https://doi.org/10.21883/PJTF.2019.17.48220.17886

32. A.-F. Lehlooh, S. H. Mahmood. J. Magn. Magn. Mater., 151, N 1-2 (1995) 163—166, https://doi.org/10.1016/0304-8853(95)00385-1

33. П. П. Горбик, В. Н. Мищенко, Н. В. Абрамов, Д. Г. Усов, Ю. Н. Трощенков. Химия, физика и технология поверхности, № 16 (2010) 165—176

34. Carlos Martinez-Boubeta, Konstantinos Simeonidis, Antonios Makridis, Makis Angelakeris, Oscar Iglesias, Pablo Guardia, Andreu Cabot, Lluis Yedra, Sonia Estradé, Francesca Peiró, Zineb Saghi, Paul A. Midgley, Iván Conde-Leborán, David Serantes, Daniel Baldomir. Sci. Rep., 3 (2013) 1652, https://doi.org/10.1038/srep01652

35. C. Martínez-Boubeta, K. Simeonidis, M. Angelakeris, N. Pazos-Pérez, M. Giersig, A. Delimitis, L. Nalbandian, V. Alexandrakis, D. Niarchos. Phys. Rev. B, 74 (2006) 054430, https://doi.org/10.1103/PhysRevB.74.054430

36. S. Disch, E. Wetterskog, R. P. Hermann, A. Wiedenmann, U. Vainio, G. Salazar-Alvarez, L. Bergström, Th. Brückel. New J. Phys., 14 (2012), https://doi.org/10.1088/1367-2630/14/1/013025

37. Seung-hyun Noh, Wonjun Na, Jung-tak Jang, Jae-Hyun Lee, Eun Jung Lee, Seung Ho Moon, Yongjun Lim, Jeon-Soo Shin, Jinwoo Cheon. Nano Lett., 12, N 7 (2012) 3716—3721, https://doi.org/10.1021/nl301499u

38. С. В. Вонсовский. Магнетизм, Москва, Наука (1971)

39. W. Zhu, J. Winterstein, I. Maimon, Q. Yin, L. Yuan, A. N. Kolmogorov, R. Sharma, G. Zhou. Phys. Chem. C, 120, N 27 (2016) 14854—14862, https://doi.org/10.1021/acs.jpcc.6b02033

40. K. Persson. Materials Data on Fe3O4 (SG:227) by Materials Project. United States, doi: 10.17188/1194194 (2015), https://legacy.materialsproject.org/materials/mp-19306/


Supplementary files

Review

For citations:


Mitskevich Y.D., Degtyarik M.M., Kharchanka A.A., Bushinsky M.V., Fedotova Yu.A., Voropay E.S. Magnetic Nanocomposites Fe3O4/FeOOH as a Promising Basis for Advanced Oxidation Processes (Fenton Reaction). Zhurnal Prikladnoii Spektroskopii. 2025;92(4):492-504. (In Russ.)

Views: 103


ISSN 0514-7506 (Print)