

Influence of Metal Type and Layer Thickness on Absorption of Optical Radiation by Profiled Si3N4/Me/Si3N4 Structures
Abstract
In the optical absorption spectra of Si3N4/Me/Si3N4 structures calculated by the finite difference time domain method, the effect of the structural layer thickness on the absorption peak level and width was found. Reducing the thickness of the upper and lower Si3N4 layers from 400 to 100 nm leads to about 20% increase in absorption and broadening of the absorption band with the intensity of >90 % from 0.8 to 1.6 μm. It is shown that in the absorption spectrum of Si3N4/Ti/Si3N4 structure with the thickness of each layer of 50 nm, the thickness of the absorption band with the intensity of >90 % consists 4.3 μm. Reducing the profiled layer of Ti from 130 to 50 nm leads to an insignificant decrease in the maximum absorption value from 99 to 96%. It has been shown that the absorption band broadening is connected with the effect of Si3N4 thickness to the interferential processes in Si3N4/Ti/Si3N4 structures. It is established that in the range of 8.3–13 μm there is a dependence of the absorption level on the metal type due to the dependence of free electrons concentration on the metal type.
About the Authors
S. V. KozodoevBelarus
Minsk
A. I. Muhammad
Belarus
Minsk
V. V. Kolos
Belarus
Minsk
P. I. Gaiduk
Belarus
Minsk
References
1. Xiaochuan Lyu. Highlights Sci., Eng. and Technol., 27 (2022) 191—200
2. Amir Kazemi, Jan Andersson. IOP Conf. Ser.: Mater. Sci. and Eng., 51 (2013)
3. K. Nibir, Ravi Dat, K. Ashok. Optoelectronics – Adv. Materials and Devices. InTech, Ch. 7 (2013)
4. Niclas Roxhed, Frank Niklaus, Andreas Fischer, Fredrik Forsberg, Linda Höglund, Per Ericsson, Björn Samel, Anders Elfving, Tor Simonsen, K. Wang, Nils Hoivik. Proc. SPIE, 7726 (2010), doi: 10.1117/12.855752
5. A. Minhas, D. Bansal. Microsystem Technologies, 27, N 8 (2021) 3219—3223
6. Basak Kebapci, Ozgecan Dervisoglu, Enes Battal, Ali Okyay, Tayfun Akin. Proc. SPIE, 9070 (2014), doi: 10.1117/12.2069937
7. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, M. J. Bloemer. AIP Adv., 1 (2011) 032151
8. Y. Pang, C. Genet, T. W. Ebbesen. Opt. Commun., 280, N 1 (2007) 10—15
9. Erdem Aslan, Semih Korkmaz, Omer Saracoglu, Mustafa Turkmen. Opt. Sensors, SeM2C, 4 (2014)
10. Reinoud Wolffenbuttel, M. Ghaderi. Materials, 16 (2023) 4278
11. J. Li, J. Li, H. Zhou, G. Zhang, H. Liu, S. Wang, F. Yi. Opt. Express, 29, N 15 (2021) 22907—22921
12. O. Erturk, E. Battal, S. E. Kucuk, A. K. Okyay, T. Akin. Proc. SPIE, 8704, 87041E (2013)
13. R. D. R. Bhat, N. C. Panoiu, S. R. J. Brueck, R. M. Osgood, Jr. Opt. Express, 16 (2008) 4588—4596
14. A. Майер. Плазмоника: теория и приложения, Ижевск, НИЦ “Регулярная и хаотическая динамика” (2011)
15. J. B. Khurgin. Nature Nanotech., 10, N 1 (2015) 2—6
16. B. Gallinet, J. Butet, O. J. F. Martin. Laser Photon. Rev., 9, N 6 (2015) 577—603
17. Nanophotonic FDTD Simulation Software [Electronic resource], Lumerical FDTD – Mode of access, https://www.lumerical.com/products/fdtd, Date of access: 02.2024
18. E. D. Palik. Handbook of Optical Constants of Solids, 2, Academic Press (1985)
19. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Opt. Lett., 40, N 21 (2015) 4823—4826
20. А. Н. Матвеев. Электричество и магнетизм, Москва, Высшая школа (1983)
21. Н. Ашкрофт, Н. Мермин. Физика твердого тела, 1, Москва, Мир (1979)
22. Н. Л. Дмитрук, В. Р. Романюк, М. И. Таборская, С. Чарнович, С. Кокиньеси, Н. В. Юркович. Письма в ЖЭТФ, 99, № 3 (2014) 146—149.
Review
For citations:
Kozodoev S.V., Muhammad A.I., Kolos V.V., Gaiduk P.I. Influence of Metal Type and Layer Thickness on Absorption of Optical Radiation by Profiled Si3N4/Me/Si3N4 Structures. Zhurnal Prikladnoii Spektroskopii. 2025;92(2):187-192. (In Russ.)