1. M. P. Murphy, H. LeVine III. J. Alzheimer’s Disease, 19 (2010) 311-323, https://doi.org/10.3233/JAD-2010-1221
2. L. N. Zhao, L. Lu, L. Y. Chew, Y. Mu. Int. J. Mol. Sci., 15 (2014) 12631-12650, https://doi.org/10.3390/ijms150712631
3. E. Cerf, R. Sarroukh, S. Tamamizu-Kato, L. Breydo, S. Derclaye, Y. F. Dufrêne, V. Narayanaswami, E. Goormaghtigh, J-M. Ruysschaert, V. Raussens. Biochem. J., 421 (2009) 415-423, https://doi.org/10.1042/BJ20090379.
4. R. Sultana, H. F. Poon, J. Cai, W. M. Pierce, M. Merchant, J. B. Klein, W. R. Markesbery, D. A. Butterfield. Neurobiol. Dis., 22 (2006) 76-87, https://doi.org/10.1016/j.nbd.2005.10.004
5. Y. Fezoui, D. M. Hartley, D. M. Walsh, D. J. Selkoe, J. J. Osterhout, D. B. Teplow. Nat. Struct. Biol., 7 (2000) 1095-1099, http://structbio.nature.com
6. G. Shanmugam, R. Jayakumar. Biopolymers, 33 (2004) 421-434, https://doi.org/10.1001/bip.20131
7. G. Shanmugam, P. L. Polavarapu. Biophys. J., 87 (2004) 622-630, https://doi.org/10.1520/biophysj.104040907
8. A. M. D’Ursi, M. R. Armenante, R. Guerrini, S. Salvadori, G. Sorrentino, D. Picone. J. Med. Chem., 12 (2004) 4231-4238, https://doi.org/10.1021/jm040773o
9. G. Wei, J. E. Shea. Biophys. J., 91 (2006) 1638-1647, https://doi.org/10.1529/biophysj/105.079186
10. S. Lee, Y. Kim. Bull. Korean Chem. Soc., 25 (2004) 838-842, https://doi.org/10/5012/bkcs/2004/25/6/838
11. L. Millucci, L. Ghezzi, G. Bernardini, A. Santucci. Current. Protein and Peptide Science, 11 (2010) 54-67, https://doi.org/10.2174/138920310790274626
12. E. Terzi, G. Holzemann, J. Seelig. Biochemistry, 33 (1994) 1345-1350, https://doi.org/10.1021/bi00172a009
13. Y. Song, P. Li, L. Liu, C. Bartolini, M. Dong. Sci. Reports, 8 (2018) 765-774, https://doi.org/10.1038/s41598-017-19106-y
14. H.-H. G. Tsai, J.-B. Lee, Y. C. Shih, L. Wan, F.-K. Shieh, C.-Y. Chen. ChemMedChem, 9, N 5 (2014) 1002-1011, https://chemistryeurope.onlinelibrary.wiley.com/doi/10.1002/cmdc.201400062
15. A. Santoro, M. Buonocore, M. Grimaldi, E. Napolitano, A. M. D’Ursi. Int. J. Mol. Sci., 24, N 2 (2023) 971, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867351
16. N. Kandel, J. O. Matos, S. A. Tatulian. Sci. Rep., 9 (2019) 2689, https://www.nature.com/articles/s41598-019-38749-7
17. G. D’Errico, G. Vitiello, Ornella Ortona, A. Tedeschi, A. Ramunno, A. M. D’Ursi. Biochim. Biophys. Acta, 1778 (2008) 2710-2716
18. S. Dante, T. Hauß, N. A. Dencher. Eur. Biophys J., 35 (2006), 523-531, doi. 10.1007/s00249-006-0062-x
19. V. Rudajev, J. Novotny. Front Mol. Neurosci., 15 (2022) 937056, https://doi.org/s://doi:10.3389/fnmol.2022.937056
20. M. D. Rieth, A. Lozano. Biochem. Biophys. Rep., 22 (2020) 100764, https://doi.org/10.1016/j.bbrep.2020.100764
21. L. Whitmore, B. A. Wallace. Nucl. Acids Res., 32 (2004) W668-W673, https://doi.org/10.1093/nar/gkh371
22. L. Whitmore, B. A. Wallace. Biopolymers, 89 (2008) 392-400, https://doi.org/10.1002/bip.20853
23. L. A. Compton, W. C. Johnson. Anal. Biochem., 155 (1986) 155-167, https://doi.org/10.1016/0003-2697(86)90241-1
24. P. Manavalan, W. C. Johnson. Anal. Biochem., 167 (1987) 76-85, https://doi.org/10.1016/0003-2697(87)90135-7
25. T. Kohno, K. Kobayashi, T. Maeda, K. Sato, A. Takashima. Biochemistry, 35 (1996) 16094-16104, https://doi.org/10.1021/bi961598j
26. S. Vivekanandan, J. R. Brender, S. Y. Lee, A. Ramamoorthy. Biochem. Biophys. Res. Commun., 411 (2011) 312-316, https://doi.org/10.1016/j.bbrc.2011.06.133
27. Y. Fezoui, D. B. Teplow. J. Biol. Chem., 277 (2002) 36948-36954, https://doi.org/10.1074/jbc.M204168200
28. G. A. Agaeva. J. Appl. Spectr., 72 (2005) 447-453
29. G. A. Agaeva, G. Z. Najafova. Russ. Biophysics, 68, N 5 (2023) 871-877, https://doi.org/10.1134/S0006350923050020