Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the Spatial Structure of β-Amyloid Peptide (25-35) from Circular Dichroism Spectroscopy in the Medium Close to Membrane Environment Conditions

Abstract

The spatial structure of β-amyloid peptide (25-35) was studied using circular dichroism spectroscopy in a medium close to the conditions of the membrane environment. The conformational preference of β-amyloid peptide (25-35) was first studied in dipalmitoylphosphatidylcholine (DPPC) solution with and without cholesterol using circular dichroism spectroscopy. It was found that the peptide adopts the structures of the a- helix, β-sheet, β-turn and irregular regions, and their relative proportions changed depending on the presence of cholesterol. The results of the spectral analysis of β-amyloid peptide (25-35) made it possible to unambiguously assume the secondary structure of the peptide in a lipid solvent. It has been shown that ordering of the secondary structure of the β-amyloid peptide (25-35) is observed in the solution with DPPC, which maximally simulates the environment on the surface of the plasma membrane.

About the Authors

G. A. Agaeva
Institute for Physical Problems, Baku State University
Azerbaijan

Baku



G. Z. Najafova
French-Azerbaijani University
Azerbaijan

Baku



A. Dj. Mammadov
Institute of Biophysics of Ministry of Science and Education of Azerbaijan Republic
Azerbaijan

Baku



References

1. M. P. Murphy, H. LeVine III. J. Alzheimer’s Disease, 19 (2010) 311—323, doi: 10.3233/JAD-2010-1221

2. L. N. Zhao, L. Lu, L. Y. Chew, Y. Mu. Int. J. Mol. Sci., 15 (2014) 12631—12650, doi: 10.3390/ijms150712631

3. E. Cerf, R. Sarroukh, S. Tamamizu-Kato, L. Breydo, S. Derclaye, Y. F. Dufrêne, V. Narayanaswami, E. Goormaghtigh, J-M. Ruysschaert, V. Raussens. Biochem. J., 421 (2009) 415—423, doi: 10.1042/BJ20090379.

4. R. Sultana, H. F. Poon, J. Cai, W. M. Pierce, M. Merchant, J. B. Klein, W. R. Markesbery, D. A. Butterfield. Neurobiol. Dis., 22 (2006) 76—87, doi: 10.1016/j.nbd.2005.10.004

5. Y. Fezoui, D. M. Hartley, D. M. Walsh, D. J. Selkoe, J. J. Osterhout, D. B. Teplow. Nat. Struct. Biol., 7 (2000) 1095—1099, http://structbio.nature.com

6. G. Shanmugam, R. Jayakumar. Biopolymers, 33 (2004) 421—434, doi: 10.1001/bip.20131

7. G. Shanmugam, P. L. Polavarapu. Biophys. J., 87 (2004) 622—630, doi: 10.1520/biophysj.104040907

8. A. M. D’Ursi, M. R. Armenante, R. Guerrini, S. Salvadori, G. Sorrentino, D. Picone. J. Med. Chem., 12 (2004) 4231—4238, doi: 10.1021/jm040773o

9. G. Wei, J. E. Shea. Biophys. J., 91 (2006) 1638—1647, doi: 10.1529/biophysj/105.079186

10. S. Lee, Y. Kim. Bull. Korean Chem. Soc., 25 (2004) 838—842, doi: 10/5012/bkcs/2004/25/6/838

11. L. Millucci, L. Ghezzi, G. Bernardini, A. Santucci. Current. Protein and Peptide Science, 11 (2010) 54—67, doi: 10.2174/138920310790274626

12. E. Terzi, G. Holzemann, J. Seelig. Biochemistry, 33 (1994) 1345—1350, doi: 10.1021/bi00172a009

13. Y. Song, P. Li, L. Liu, C. Bartolini, M. Dong. Sci. Reports, 8 (2018) 765—774, doi: 10.1038/s41598-017-19106-y

14. H.-H. G. Tsai, J.-B. Lee, Y. C. Shih, L. Wan, F.-K. Shieh, C.-Y. Chen. ChemMedChem, 9, N 5 (2014) 1002—1011, https://chemistryeurope.onlinelibrary.wiley.com/doi/10.1002/cmdc.201400062

15. A. Santoro, M. Buonocore, M. Grimaldi, E. Napolitano, A. M. D’Ursi. Int. J. Mol. Sci., 24, N 2 (2023) 971, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867351/

16. N. Kandel, J. O. Matos, S. A. Tatulian. Sci. Rep., 9 (2019) 2689, https://www.nature.com/articles/s41598-019-38749-7

17. G. D’Errico, G. Vitiello, Ornella Ortona, A. Tedeschi, A. Ramunno, A. M. D’Ursi. Biochim. Biophys. Acta, 1778 (2008) 2710—2716

18. S. Dante, T. Hauß, N. A. Dencher. Eur. Biophys J., 35 (2006), 523—531, doi. 10.1007/s00249-006-0062-x

19. V. Rudajev, J. Novotny. Front Mol. Neurosci., 15 (2022) 937056, https://doi:10.3389/fnmol.2022.937056

20. M. D. Rieth, A. Lozano. Biochem. Biophys. Rep., 22 (2020) 100764, doi: 10.1016/j.bbrep.2020.100764

21. L. Whitmore, B. A. Wallace. Nucl. Acids Res., 32 (2004) W668—W673, doi: 10.1093/nar/gkh371

22. L. Whitmore, B. A. Wallace. Biopolymers, 89 (2008) 392—400, doi: 10.1002/bip.20853

23. L. A. Compton, W. C. Johnson. Anal. Biochem., 155 (1986) 155—167, doi: 10.1016/0003-2697(86)90241-1

24. P. Manavalan, W. C. Johnson. Anal. Biochem., 167 (1987) 76—85, doi: 10.1016/0003-2697(87)90135-7

25. T. Kohno, K. Kobayashi, T. Maeda, K. Sato, A. Takashima. Biochemistry, 35 (1996) 16094—16104, doi: 10.1021/bi961598j

26. S. Vivekanandan, J. R. Brender, S. Y. Lee, A. Ramamoorthy. Biochem. Biophys. Res. Commun., 411 (2011) 312—316, doi: 10.1016/j.bbrc.2011.06.133

27. Y. Fezoui, D. B. Teplow. J. Biol. Chem., 277 (2002) 36948—36954, doi: 10.1074/jbc.M204168200

28. G. A. Agaeva. J. Appl. Spectr., 72 (2005) 447—453

29. G. A. Agaeva, G. Z. Najafova. Russ. Biophysics, 68, N 5 (2023) 871—877, doi: 10.1134/S0006350923050020


Review

For citations:


Agaeva G.A., Najafova G.Z., Mammadov A.D. Study of the Spatial Structure of β-Amyloid Peptide (25-35) from Circular Dichroism Spectroscopy in the Medium Close to Membrane Environment Conditions. Zhurnal Prikladnoii Spektroskopii. 2025;92(2):216-221. (In Russ.)

Views: 36


ISSN 0514-7506 (Print)