

Study of the Spatial Structure of β-Amyloid Peptide (25-35) from Circular Dichroism Spectroscopy in the Medium Close to Membrane Environment Conditions
Abstract
The spatial structure of β-amyloid peptide (25-35) was studied using circular dichroism spectroscopy in a medium close to the conditions of the membrane environment. The conformational preference of β-amyloid peptide (25-35) was first studied in dipalmitoylphosphatidylcholine (DPPC) solution with and without cholesterol using circular dichroism spectroscopy. It was found that the peptide adopts the structures of the a- helix, β-sheet, β-turn and irregular regions, and their relative proportions changed depending on the presence of cholesterol. The results of the spectral analysis of β-amyloid peptide (25-35) made it possible to unambiguously assume the secondary structure of the peptide in a lipid solvent. It has been shown that ordering of the secondary structure of the β-amyloid peptide (25-35) is observed in the solution with DPPC, which maximally simulates the environment on the surface of the plasma membrane.
About the Authors
G. A. AgaevaAzerbaijan
Baku
G. Z. Najafova
Azerbaijan
Baku
A. Dj. Mammadov
Azerbaijan
Baku
References
1. M. P. Murphy, H. LeVine III. J. Alzheimer’s Disease, 19 (2010) 311—323, doi: 10.3233/JAD-2010-1221
2. L. N. Zhao, L. Lu, L. Y. Chew, Y. Mu. Int. J. Mol. Sci., 15 (2014) 12631—12650, doi: 10.3390/ijms150712631
3. E. Cerf, R. Sarroukh, S. Tamamizu-Kato, L. Breydo, S. Derclaye, Y. F. Dufrêne, V. Narayanaswami, E. Goormaghtigh, J-M. Ruysschaert, V. Raussens. Biochem. J., 421 (2009) 415—423, doi: 10.1042/BJ20090379.
4. R. Sultana, H. F. Poon, J. Cai, W. M. Pierce, M. Merchant, J. B. Klein, W. R. Markesbery, D. A. Butterfield. Neurobiol. Dis., 22 (2006) 76—87, doi: 10.1016/j.nbd.2005.10.004
5. Y. Fezoui, D. M. Hartley, D. M. Walsh, D. J. Selkoe, J. J. Osterhout, D. B. Teplow. Nat. Struct. Biol., 7 (2000) 1095—1099, http://structbio.nature.com
6. G. Shanmugam, R. Jayakumar. Biopolymers, 33 (2004) 421—434, doi: 10.1001/bip.20131
7. G. Shanmugam, P. L. Polavarapu. Biophys. J., 87 (2004) 622—630, doi: 10.1520/biophysj.104040907
8. A. M. D’Ursi, M. R. Armenante, R. Guerrini, S. Salvadori, G. Sorrentino, D. Picone. J. Med. Chem., 12 (2004) 4231—4238, doi: 10.1021/jm040773o
9. G. Wei, J. E. Shea. Biophys. J., 91 (2006) 1638—1647, doi: 10.1529/biophysj/105.079186
10. S. Lee, Y. Kim. Bull. Korean Chem. Soc., 25 (2004) 838—842, doi: 10/5012/bkcs/2004/25/6/838
11. L. Millucci, L. Ghezzi, G. Bernardini, A. Santucci. Current. Protein and Peptide Science, 11 (2010) 54—67, doi: 10.2174/138920310790274626
12. E. Terzi, G. Holzemann, J. Seelig. Biochemistry, 33 (1994) 1345—1350, doi: 10.1021/bi00172a009
13. Y. Song, P. Li, L. Liu, C. Bartolini, M. Dong. Sci. Reports, 8 (2018) 765—774, doi: 10.1038/s41598-017-19106-y
14. H.-H. G. Tsai, J.-B. Lee, Y. C. Shih, L. Wan, F.-K. Shieh, C.-Y. Chen. ChemMedChem, 9, N 5 (2014) 1002—1011, https://chemistryeurope.onlinelibrary.wiley.com/doi/10.1002/cmdc.201400062
15. A. Santoro, M. Buonocore, M. Grimaldi, E. Napolitano, A. M. D’Ursi. Int. J. Mol. Sci., 24, N 2 (2023) 971, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867351/
16. N. Kandel, J. O. Matos, S. A. Tatulian. Sci. Rep., 9 (2019) 2689, https://www.nature.com/articles/s41598-019-38749-7
17. G. D’Errico, G. Vitiello, Ornella Ortona, A. Tedeschi, A. Ramunno, A. M. D’Ursi. Biochim. Biophys. Acta, 1778 (2008) 2710—2716
18. S. Dante, T. Hauß, N. A. Dencher. Eur. Biophys J., 35 (2006), 523—531, doi. 10.1007/s00249-006-0062-x
19. V. Rudajev, J. Novotny. Front Mol. Neurosci., 15 (2022) 937056, https://doi:10.3389/fnmol.2022.937056
20. M. D. Rieth, A. Lozano. Biochem. Biophys. Rep., 22 (2020) 100764, doi: 10.1016/j.bbrep.2020.100764
21. L. Whitmore, B. A. Wallace. Nucl. Acids Res., 32 (2004) W668—W673, doi: 10.1093/nar/gkh371
22. L. Whitmore, B. A. Wallace. Biopolymers, 89 (2008) 392—400, doi: 10.1002/bip.20853
23. L. A. Compton, W. C. Johnson. Anal. Biochem., 155 (1986) 155—167, doi: 10.1016/0003-2697(86)90241-1
24. P. Manavalan, W. C. Johnson. Anal. Biochem., 167 (1987) 76—85, doi: 10.1016/0003-2697(87)90135-7
25. T. Kohno, K. Kobayashi, T. Maeda, K. Sato, A. Takashima. Biochemistry, 35 (1996) 16094—16104, doi: 10.1021/bi961598j
26. S. Vivekanandan, J. R. Brender, S. Y. Lee, A. Ramamoorthy. Biochem. Biophys. Res. Commun., 411 (2011) 312—316, doi: 10.1016/j.bbrc.2011.06.133
27. Y. Fezoui, D. B. Teplow. J. Biol. Chem., 277 (2002) 36948—36954, doi: 10.1074/jbc.M204168200
28. G. A. Agaeva. J. Appl. Spectr., 72 (2005) 447—453
29. G. A. Agaeva, G. Z. Najafova. Russ. Biophysics, 68, N 5 (2023) 871—877, doi: 10.1134/S0006350923050020
Review
For citations:
Agaeva G.A., Najafova G.Z., Mammadov A.D. Study of the Spatial Structure of β-Amyloid Peptide (25-35) from Circular Dichroism Spectroscopy in the Medium Close to Membrane Environment Conditions. Zhurnal Prikladnoii Spektroskopii. 2025;92(2):216-221. (In Russ.)