

Spectrofluorimeter for Kinetic Spectral Analysis
Abstract
A laser spectrofluorimeter for spectral-kinetic luminescent analysis has been developed. The spectrofluorimeter allows recording steady-state fluorescence spectra, fluorescence decay kinetics using the time-correlated single photon counting method with a time measurement range of 0.2–10,000 ns. Laser diodes (wavelength 400.7, 451.6, 508.2, 657.9, and 759.3 nm) with the ability to adjust the frequency of 0–20 MHz and the pulse duration at half-height of 70–200 ps or with an increased light power by 50–100 times and a duration of 1.5–3.0 ns, as well as light-emitting diodes (267.5, 305.0, and 368.1 nm) with the pulse duration at halfheight from 1.6 ns are used as fluorescence excitation sources. The optical scheme of the spectrofluorimeter is based on a monochromator-spectrograph with two output ports on which a CMOS detector and a photomultiplier are installed. In the monochromator mode, the spectrofluorimeter allows recording luminescence in the range of 200–900 nm, in the polychromator mode of 200–1000 nm. All main units are controlled from a single software, which includes the developed software module “FluoTau” for analyzing the fluorescence decay kinetics. This module allows approximating the recorded fluorescence decay kinetics with a sum of up to 5 exponents, has wide capabilities for preliminary processing and setting up the data approximation model.
About the Authors
M. P. SamtsovBelarus
Minsk
D. S. Tarasau
Belarus
Minsk
A. E. Radzko
Belarus
Minsk
K. A. Shevchenko
Belarus
Minsk
A. A. Kirsanov
Belarus
Minsk
N. V. Laboda
Belarus
Minsk
E. S. Voropay
Belarus
Minsk
References
1. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, Boston, Springer US (2006), https://doi.org/10.1007/978-0-387-46312-4
2. B. Valeur, J. C. Brochon. New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, Springer Science & Business Media (2012), https://doi.org/10.1007/978-3-642-56853-4
3. R. Cundall. Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Springer Science & Business Media (2013), https://doi.org/10.1007/978-1-4757-1634-4
4. M. Hof, R. Hutterer, V. Fidler. Fluorescence Spectroscopy in Biology: Advanced Methods and their Applications to Membranes, Proteins, DNA, and Cells, Springer Science & Business Media (2005), https://doi.org/10.1007/b138383
5. M. Y. Berezin, S. Achilefu. Chem. Rev., 110, N 5 (2010) 2641—2684, https://doi.org/10.1021/cr900343z
6. P. Sarder, D. Maji, S. Achilefu. Bioconjugate Chem., 26, N 6 (2015) 963—974, https://doi.org/10.1021/acs.bioconjchem.5b00167
7. D. Cavazos‐Elizondo, A. Aguirre‐Soto. Analysis and Sensing, 2, N 5 (2022) e202200004, https://doi.org/10.1002/anse.202200004
8. Advanced Time-Correlated Single Photon Counting Applications, Ed. W. Becker, Springer International Publishing (2015), https://doi.org/10.1007/978-3-319-14929-5
9. L. Marcu. Ann. Biomed. Eng., 40 (2012) 304—331, https://doi.org/10.1007/s10439-011-0495-y
10. L. Marcu, P. M. W. French, D. S. Elson. Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics, CRC Press (2015)
11. D. Gorpas, L. Marcu. Fluorescence Lifetime Spectroscopy and Imaging Techniques in Medical Applications. In: Olivo, M., Dinish, U. (Eds.) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol. 3, Springer, Singapore (2015), https://doi.org/10.1007/978-981-287-627-0_1
12. D. O’Connor. Time-Correlated Single Photon Counting, Academic Press (1984)
13. D. J. S. Birch, R. E. Imhof. Time-Domain Fluorescence Spectroscopy Using Time-Correlated SinglePhoton counting, Springer US (1991), https://doi.org/10.1007/0-306-47057-8_1
14. W. Becker. Advanced Time-Correlated Single Photon Counting Techniques, Springer Science & Business Media (2005), https://doi.org/10.1007/3-540-28882-1
15. E. S. Voropai, K. F. Ermalitskaia, F. A. Ermalitski, A. E. Rad’ko, N. V. Rzheutsky, M. P. Samtsov. Instruments and Experimental Techniques, 65, N 1 (2022) 83—88, https://doi.org/10.1134/S0020441222010213
16. Е. С. Воропай, Ф. А. Ермалицкий, А. Е. Радько, М. П. Самцов. Приборы и техника эксперимента, № 1 (2020) 151—152, https://doi.org/10.31857/S0032816222010232
17. D. Bryce-Smith, M. A. West. Developments in Instrumentation and Techniques, London Chemical Society (1973)
18. A. Grinvald. Anal. Biochem., 75 (1976) 260—280, https://doi.org/10.1016/0003-2697(76)90077-4
19. T. Murao. Appl. Opt., 21, N 13 (1982) 2297—2298, https://doi.org/10.1364/AO.21.002297
20. N. Boens, Wenwu Qin, Nikola Basarić, J. Hofkens, M. Ameloot, Jacques Pouget, Jean Pierre Lefèvre, Bernard Valeur, Enrico Gratton, Martin vanDeven, Norberto D Silva, Yves Engelborghs, Katrien Willaert, Alain Sillen, Garry Rumbles, David Phillips, Antonie J. W. G. Visser, Arie Van Hoek, Joseph R. Lakowicz, Henryk Malak, Ignacy Gryczynski, Arthur G. Szabo, Don T. Krajcarski, Naoto Tamai, Atsushi Miura. Anal. Chem., 79, N 5 (2007) 2137—2149, https://doi.org/10.1021/ac062160k
21. H. Lemmetyinen, N. V. Tkachenko, B. Valeur, J. I. Hotta, M. Ameloot, N. P. Ernsting, T. Gustavsson, N. Boens. Pure and Appl. Chem., 86, N 12 (2014) 1969—1998, https://doi.org/10.1515/pac-20130912
22. А. Гордон, Р. Форд. Спутник химика, Москва, Мир (1976)
23. D. Magde, G. E. Rojas, P. G. Seybold. Photochem. Photobiol., 70, N 5 (1999) 737—744, https://doi.org/10.1111/j.1751-1097.1999.tb08277.x
24. A. Harriman, G. Luengo, K. S. Gulliya. Photochem. Photobiol., 52, N 4 (1990) 735—740, https://doi.org/10.1111/j.1751-1097.1990.tb08674.x
25. P. F. Moulton. JOSA B, 3, N 1 (1986) 125—133, https://doi.org/10.1364/JOSAB.3.000125
26. L. M. B. Hickey, E. Martins, J. E. Román, W. S. Brocklesby, J. S. Wilkinson. Opt. Lett., 21, N 8 (1996) 597—599, https://doi.org/10.1364/OL.21.000597
27. M. Levitus, S. Ranjit. Quarterly Rev. Biophys., 44, N 1 (2011) 123—151, https://doi.org/10.1017/s0033583510000247
28. М. П. Самцов, Д. С. Тарасов, Е. С. Воропай. Журн. прикл. спектр., 90, № 5 (2023) 738—746 [M. P. Samtsov, D. S. Tarasov, E. S. Voropay. J. Appl. Spectr., 90 (2023) 1029—1036], https://doi.org/10.1007/s10812-023-01628-1
29. М. П. Самцов, С. А. Тихомиров, Л. С. Ляшенко, Д. С. Тарасов, О. В. Буганов, В. А. Галиевский, А. С. Сташевский, Е. С. Воропай. Журн. прикл. спектр., 80, № 2 (2013) 177—182 [M. P. Samtsov, S. A. Tikhomirov, L. S. Lyashenka, D. S. Tarasau, O. V. Buganov, V. A. Galievsky, A. S. Stasheuski, E. S. Voropay. J. Appl. Spectr., 80 (2013) 170—175], https://doi.org/10.1007/s10812-013-9741-4
30. М. П. Самцов, Е. С. Воропай, К. Н. Каплевский, Д. Г. Мельников. Журн. прикл. спектр., 75, № 5 (2008) 684—693 [M. P. Samtsov, E. S. Voropai, K. N. Kaplevskii, D. G. Mel’nikov. J. Appl. Spectr., 75, N 5 (2008) 692—699], https://doi.org/10.1007/s10812-008-9102-x
31. N. V. Kozobkova, M. P. Samtsov, A. P. Lugovski, N. V. Bel’ko, D. S. Tarasov, A. S. Kaprelyants, A. P. Savitsky, M. O. Shleeva. Int. J. Mol. Sci., 25, N 15 (2024) 8505, https://doi.org/10.3390/ijms25158505
32. Д. С. Тарасов, М. П. Самцов, Ю. И. Ощепкова, А. П. Луговский, Е. С. Воропай. Журн. прикл. спектр., 91, № 2 (2024) 273—280 [D. S. Tarasov, M. P. Samtsov, Yu. I. Oshchepkova, A. P. Lugovski, E. S. Voropay. J. Appl. Spectr., 91 (2024) 349—356], https://doi.org/10.1007/s10812-024-01727-7
Review
For citations:
Samtsov M.P., Tarasau D.S., Radzko A.E., Shevchenko K.A., Kirsanov A.A., Laboda N.V., Voropay E.S. Spectrofluorimeter for Kinetic Spectral Analysis. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):640-649. (In Russ.)