

Spectrophotometric Determination of Component Concentrations in a Light-Scattering Mixture
Abstract
Method for determining the concentrations of mixture components from their optical absorption spectra in the presence of Rayleigh scattering is proposed. The differential evolution method was used to calculate the concentrations of components. It was used to minimize the difference between experimental and calculated spectra. To demonstrate the performance of the method, the concentrations of the components of the model mixture were determined from its optical absorption spectrum. This model mixture included five azo dyes with significantly overlapping absorption spectra and a noticeable light scattering contribution. The influence of the absorption spectrum errors on the errors of component concentrations was evaluated. Without light scattering both the multiple linear regression method and the method of differential evolution give the results of determination of the component concentrations coinciding within the measurement accuracy. It is reasonable to use the method of differential evolution for spectrophotometric determination of the concentrations of mixture components in the presence of light scattering.
About the Authors
V. S. KozlovskyRussian Federation
Moscow
A. P. Razjivin
Russian Federation
Moscow
References
1. Р. К. Чернова, Л. М. Козлова, Н. Б. Шестопалова, Ю. О. Рьянова. Изв. Саратовского ун-та, 8, Сер. Химия. Биология. Экология, вып. 2 (2008) 15—22
2. Shilan A. Omer, Nabil A. Fakhre. J. Spectroscopy (2019) 8241625(1—11), doi: 10.1155/2019/8241625
3. Shilan A. Omer, Nabil A. Fakhre. J. Anal. Methods Chem. (2020) 4912762(1—16), doi: 10.1155/2020/4912762
4. E. K. Janghel, J. K. Rai, M. K. Rai, V. K. Gupta. J. Braz. Chem. Soc., 18, N 3 (2007) 590—594, doi: 10.1590/S0103-50532007000300015
5. A. Benvidi, S. Abbasi, S. Gharaghani, M. D. Tezerjani, S. Masoum. Food Chemistry, 220 (2017) 377—384, doi: 10.1016/j.foodchem.2016.10.01
6. F. Turak, M. U. Ozgur. J. Chemistry (2013) 127847(1—9), doi: 10.1155/2013/127847
7. A. Bordagaray, S. Davila, R. Garcia‐Arrona, M. Vidal, M. Ostra. J. Chemometrics (2019) e3176(1—10), doi: 10.1002/cem.3176
8. В. В. Бессонов, О. И. Передеряев, М. Н. Богачук, А. Д. Малинкин. Пищевая промышленность, 12 (2012) 20—24
9. A. Kaur, U. Gupta. J. Science, 25, N 3 (2012) 579—588
10. I.-A. Potărniche, C. Sarosi, R. M. Terebes, L. Szolga, R. Gălătus. Sensors, 23 (2023) 2517(1—29), doi: 10.3390/s23177517
11. M. Altimarad, K. N. Venugopala, B. E. Aldhubiab, A. B. Nair, N. SreeHarsha, S. Pottathil, S. H. Akrawi. J. Spectroscopy (2019) 8202160(1—10), doi: 10.1155/2019/8202160
12. И. В. Власова, А. В. Шилова, Ю. С. Фокина. Диагностика материалов, 77, № 1 (2011) 21—28
13. Sh. Ramzy, A. H. Abdelazim. Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 272 (2022) 121012(1—4), doi: 10.1016/j.saa.2022.121012
14. A. C. Kogawa, H. R. Nunes Salgado. Drug Anal. Res., Porto Alegre, 6, N 2 (2022) 3—7, doi: 10.22456/2527-2616.127631
15. Т. Н. Цокова, Л. И. Котлова. Междунар. журн. прикл. и фундамент. исследований, № 4 (2019) 76—81
16. M. M. Seleim, M. S. Abu-Bakr, E. Y. Hashem, A. M. El-Zohry. J. Appl. Spectr., 76, N 4 (2009) 554—563, doi: 10.1007/s10812-009-9224-9
17. P. P. Naik, J. Karthikeyan, A. N. Shetty. Environ. Monit. Assess, 171 (2010) 639—649, doi: 10.1007/s10661-010-1308-8
18. И. В. Власова, А. С. Шелпакова, Е. Н. Масякова. Аналитика и контроль, 13, № 2 (2009) 86—90
19. Yu. B. Monakhova, S. P. Mushtakova, S. S. Kolesnikova. J. Anal. Chem., 65, N 6 (2010) 588—595, doi: 10.1134/S1061934810060079
20. PhotochemCAD™, https://www.photochemcad.com
21. R. D. Camerini-Otero, R. M. Franklin, L. A. Day. Biochemistry, 13, N 18 (1974) 3763—3773, doi: 10.1021/bi00715a023
22. A. L. Ksenofontov, V. S. Kozlovskii, L. V. Kordyukova, V. A. Radyukhin, A. V. Timofeeva, E. N. Dobrov. Mol. Biol., 40, N 1 (2006) 152—158, doi: 10.1134/S0026893306010201
23. F. Bonhoeffer, H. K. Schachman. Biophys. Res. Commun., 2, N 5 (1960) 366—371, doi: 10.1016/0006-291X(60)90036-X
24. P. Doty, R. F. Steiner. J. Chem. Phys., 18, N 9 (1950) 1211—1220, doi: 10.1063/1.1747913
25. D. Conzáles Gómez, A. Muñoz de la Peña, A. Espinosa Mansilla, A. César Olivieri. Chem. Educator, 8 (2003) 187—191
26. I. S. Herschberg. Overdetermined linear systems in multicomponent spectrophotometry. Phd Thesis 1 (Research TU/e/Graduation TU/e), Chemical Engineering and Chemistry, Technische Hogeschool Eindhoven (1966), doi: 10.6100/IR113852
27. G. Talsky. Derivative Spectrophotometry. Low and Higher Order, VCH Veinheim (1994)
28. J. Dubrovkin. Derivative Spectroscopy, Cambridge Scholars Publishing (2021)
29. J. Karpinska. Basic Principles and Analytical Application of Derivative Spectrophotometry, Ch.13 in Macro to Nano Spectroscopy, IntechOpen (2012) 253—268
30. C. Bosch Ojeda, F. Sanchez Rojas. Microchem. J. Rev., 106 (2013) 1—16
31. O. Ye. Rodionova, A. L. Pomerantsev. Russ. Chem. Rev., 75, N 4 (2006) 271—287, doi: 10.1070/RC2006v075n04ABEH003599
32. A. Biancolillo, F. Marin. Front. Chem., 6 (2018) 576(1—14), doi: 10.3389/fchem.2018.00576
33. A. Gogoi, A. Choudhury, G. A. Ahmed. J. Modern Optics, 57, N 21 (2010) 2192—2202, doi: 10.1080/09500340.2010.533206
34. Специализированный калькулятор NanoComposix, https://nanocomposix.com/pages/mie-theorycalculator
35. Z. Kajee-Bagdadi. Differential Evolution Algorithms for Constrained Global Optimization Thesis Fac. Sci., Univ. Witwatersrand, Johannesburg (2007) 1—146
36. V. Feoktistov. Differential Evolution. In Search of Solutions, Springer (2006)
37. K. V. Price, R. M. Storn, J. A. Lampinen. Differential Evolution. A Practical Approach to Global Optimization, Springer (2005)
38. T. Eltaeib, A. Mahmood. Differential Evolution: A Survey and Analysis Appl. Sci., 8 (2018) 1945 (1—45), doi: 10.3390/app8101945
39. В. С. Козловский, А. П. Разживин. Расчет концентраций компонентов смеси в растворе по спектру оптического поглощения смеси и опорным спектрам компонентов, свидетельство о регистрации прав на программное обеспечение RU 2024662633 (2024)
40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes. The Art of Scientific Computing, 3rd ed., Cambridge University Press (2007)
41. В. С. Козловский, А. П. Разживин. Спектрофотометрическое определение концентраций компонентов в светорассеивающей смеси, свидетельство о регистрации прав на программное обеспечение RU 2024691597 (2024)
Review
For citations:
Kozlovsky V.S., Razjivin A.P. Spectrophotometric Determination of Component Concentrations in a Light-Scattering Mixture. Zhurnal Prikladnoii Spektroskopii. 2025;92(3):303-310. (In Russ.)