Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectrophotometric Determination of Component Concentrations in a Light-Scattering Mixture

Abstract

Method for determining the concentrations of mixture components from their optical absorption spectra in the presence of Rayleigh scattering is proposed. The differential evolution method was used to calculate the concentrations of components. It was used to minimize the difference between experimental and calculated spectra. To demonstrate the performance of the method, the concentrations of the components of the model mixture were determined from its optical absorption spectrum. This model mixture included five azo dyes with significantly overlapping absorption spectra and a noticeable light scattering contribution. The influence of the absorption spectrum errors on the errors of component concentrations was evaluated. Without light scattering both the multiple linear regression method and the method of differential evolution give the results of determination of the component concentrations coinciding within the measurement accuracy. It is reasonable to use the method of differential evolution for spectrophotometric determination of the concentrations of mixture components in the presence of light scattering.

About the Authors

V. S. Kozlovsky
A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation

Moscow



A. P. Razjivin
A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation

Moscow



References

1. Р. К. Чернова, Л. М. Козлова, Н. Б. Шестопалова, Ю. О. Рьянова. Изв. Саратовского ун-та, 8, Сер. Химия. Биология. Экология, вып. 2 (2008) 15—22

2. Shilan A. Omer, Nabil A. Fakhre. J. Spectroscopy (2019) 8241625(1—11), doi: 10.1155/2019/8241625

3. Shilan A. Omer, Nabil A. Fakhre. J. Anal. Methods Chem. (2020) 4912762(1—16), doi: 10.1155/2020/4912762

4. E. K. Janghel, J. K. Rai, M. K. Rai, V. K. Gupta. J. Braz. Chem. Soc., 18, N 3 (2007) 590—594, doi: 10.1590/S0103-50532007000300015

5. A. Benvidi, S. Abbasi, S. Gharaghani, M. D. Tezerjani, S. Masoum. Food Chemistry, 220 (2017) 377—384, doi: 10.1016/j.foodchem.2016.10.01

6. F. Turak, M. U. Ozgur. J. Chemistry (2013) 127847(1—9), doi: 10.1155/2013/127847

7. A. Bordagaray, S. Davila, R. Garcia‐Arrona, M. Vidal, M. Ostra. J. Chemometrics (2019) e3176(1—10), doi: 10.1002/cem.3176

8. В. В. Бессонов, О. И. Передеряев, М. Н. Богачук, А. Д. Малинкин. Пищевая промышленность, 12 (2012) 20—24

9. A. Kaur, U. Gupta. J. Science, 25, N 3 (2012) 579—588

10. I.-A. Potărniche, C. Sarosi, R. M. Terebes, L. Szolga, R. Gălătus. Sensors, 23 (2023) 2517(1—29), doi: 10.3390/s23177517

11. M. Altimarad, K. N. Venugopala, B. E. Aldhubiab, A. B. Nair, N. SreeHarsha, S. Pottathil, S. H. Akrawi. J. Spectroscopy (2019) 8202160(1—10), doi: 10.1155/2019/8202160

12. И. В. Власова, А. В. Шилова, Ю. С. Фокина. Диагностика материалов, 77, № 1 (2011) 21—28

13. Sh. Ramzy, A. H. Abdelazim. Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 272 (2022) 121012(1—4), doi: 10.1016/j.saa.2022.121012

14. A. C. Kogawa, H. R. Nunes Salgado. Drug Anal. Res., Porto Alegre, 6, N 2 (2022) 3—7, doi: 10.22456/2527-2616.127631

15. Т. Н. Цокова, Л. И. Котлова. Междунар. журн. прикл. и фундамент. исследований, № 4 (2019) 76—81

16. M. M. Seleim, M. S. Abu-Bakr, E. Y. Hashem, A. M. El-Zohry. J. Appl. Spectr., 76, N 4 (2009) 554—563, doi: 10.1007/s10812-009-9224-9

17. P. P. Naik, J. Karthikeyan, A. N. Shetty. Environ. Monit. Assess, 171 (2010) 639—649, doi: 10.1007/s10661-010-1308-8

18. И. В. Власова, А. С. Шелпакова, Е. Н. Масякова. Аналитика и контроль, 13, № 2 (2009) 86—90

19. Yu. B. Monakhova, S. P. Mushtakova, S. S. Kolesnikova. J. Anal. Chem., 65, N 6 (2010) 588—595, doi: 10.1134/S1061934810060079

20. PhotochemCAD™, https://www.photochemcad.com

21. R. D. Camerini-Otero, R. M. Franklin, L. A. Day. Biochemistry, 13, N 18 (1974) 3763—3773, doi: 10.1021/bi00715a023

22. A. L. Ksenofontov, V. S. Kozlovskii, L. V. Kordyukova, V. A. Radyukhin, A. V. Timofeeva, E. N. Dobrov. Mol. Biol., 40, N 1 (2006) 152—158, doi: 10.1134/S0026893306010201

23. F. Bonhoeffer, H. K. Schachman. Biophys. Res. Commun., 2, N 5 (1960) 366—371, doi: 10.1016/0006-291X(60)90036-X

24. P. Doty, R. F. Steiner. J. Chem. Phys., 18, N 9 (1950) 1211—1220, doi: 10.1063/1.1747913

25. D. Conzáles Gómez, A. Muñoz de la Peña, A. Espinosa Mansilla, A. César Olivieri. Chem. Educator, 8 (2003) 187—191

26. I. S. Herschberg. Overdetermined linear systems in multicomponent spectrophotometry. Phd Thesis 1 (Research TU/e/Graduation TU/e), Chemical Engineering and Chemistry, Technische Hogeschool Eindhoven (1966), doi: 10.6100/IR113852

27. G. Talsky. Derivative Spectrophotometry. Low and Higher Order, VCH Veinheim (1994)

28. J. Dubrovkin. Derivative Spectroscopy, Cambridge Scholars Publishing (2021)

29. J. Karpinska. Basic Principles and Analytical Application of Derivative Spectrophotometry, Ch.13 in Macro to Nano Spectroscopy, IntechOpen (2012) 253—268

30. C. Bosch Ojeda, F. Sanchez Rojas. Microchem. J. Rev., 106 (2013) 1—16

31. O. Ye. Rodionova, A. L. Pomerantsev. Russ. Chem. Rev., 75, N 4 (2006) 271—287, doi: 10.1070/RC2006v075n04ABEH003599

32. A. Biancolillo, F. Marin. Front. Chem., 6 (2018) 576(1—14), doi: 10.3389/fchem.2018.00576

33. A. Gogoi, A. Choudhury, G. A. Ahmed. J. Modern Optics, 57, N 21 (2010) 2192—2202, doi: 10.1080/09500340.2010.533206

34. Специализированный калькулятор NanoComposix, https://nanocomposix.com/pages/mie-theorycalculator

35. Z. Kajee-Bagdadi. Differential Evolution Algorithms for Constrained Global Optimization Thesis Fac. Sci., Univ. Witwatersrand, Johannesburg (2007) 1—146

36. V. Feoktistov. Differential Evolution. In Search of Solutions, Springer (2006)

37. K. V. Price, R. M. Storn, J. A. Lampinen. Differential Evolution. A Practical Approach to Global Optimization, Springer (2005)

38. T. Eltaeib, A. Mahmood. Differential Evolution: A Survey and Analysis Appl. Sci., 8 (2018) 1945 (1—45), doi: 10.3390/app8101945

39. В. С. Козловский, А. П. Разживин. Расчет концентраций компонентов смеси в растворе по спектру оптического поглощения смеси и опорным спектрам компонентов, свидетельство о регистрации прав на программное обеспечение RU 2024662633 (2024)

40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes. The Art of Scientific Computing, 3rd ed., Cambridge University Press (2007)

41. В. С. Козловский, А. П. Разживин. Спектрофотометрическое определение концентраций компонентов в светорассеивающей смеси, свидетельство о регистрации прав на программное обеспечение RU 2024691597 (2024)


Review

For citations:


Kozlovsky V.S., Razjivin A.P. Spectrophotometric Determination of Component Concentrations in a Light-Scattering Mixture. Zhurnal Prikladnoii Spektroskopii. 2025;92(3):303-310. (In Russ.)

Views: 13


ISSN 0514-7506 (Print)