Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectral-Kinetic Characteristics of Photoluminescence of AIS/ZnS-PEI Semiconductor Quantum Dots in Aqueous Solutions and Their Application in Clinical Morphology

Abstract

Dependence of parameters of time-resolved and steady-state photoluminescence for quantum dots (QD) Ag-In-S2 (AIS) with surface active groups of polyethylenimine (PEI) upon variation of pH of water solutions. It was shown that the high sensitivity of PEI structure to pH in a wide range influences the mobility of charge carriers in AIS QDs and, as a consequence, determines the features of the mechanism of the formation of the dipole moment transition in QDs. Using Stark model and assuming the absence of the electrical field on the QD surface (ZnS shell) in environments with a neutral pH and in ovarian tissues without pathology, it was substantiated that a change in the pH of solutions, both to acidic and alkaline side, causes a change in the electrical field in the local environment of the QD, which manifests itself in changes in the photoluminescence parameters of the QD (band maximum position, intensity, average lifetime). It was found that AIS-PEI QDs under study can act as a contrast agent in clinical morphology. Using confocal microspectrometry, it was shown that AIS-PEI QDs can be used not only for the visualization, but also for screening of ovarian malignancies.

About the Authors

I. G. Motevich
Yanka Kupala Grodno State University
Belarus

Grodno



E. I. Zenkevich
Belarusian National Technical University
Belarus

Minsk



S. A. Maskevich
International Sakharov Environmental Institute of Belarusian State University
Belarus

Minsk



A. V. Shulga
Grodno State Medical University
Belarus

Grodno



N. D. Strekal
Yanka Kupala Grodno State University
Belarus

Grodno



References

1. Y. Chen, T. Chen, Z. Qin, Z. Xie, M. Liang, Y. Li, J. Lin. J. Alloys and Compd., 930 (2023) 167389

2. H. Zhong, M. Wang, M. Ghorbani-Asl, J. Zhang, K. H. Ly, Z. Liao, G. Chen, Y. Wei, B. P. Biswal, E. Zschech, I. M. Weidinger, A. V. Krasheninnikov, R. Dong, X. Feng. J. Am. Chem. Soc., 143 (2021) 19992—20000

3. M. F. Bertino. Introduction to Nanotechnology, Singapore, World Scientific (2021)

4. E. Zenkevich, C. von Borczyskowski. Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics, Singapore, Pan Stanford Publishing Pte. Ltd. (2016)

5. K. J. Hughes, J. Cheng, K. A. Iyer, K. Ralhan, M. Ganesan, C. Hsu, Y. Zhan, X. Wang, B. Zhu, M. Gao, H. Wang, Y. Zhang, J. Huang, Q. A. Zhou. ACS Nano, 18 (2024) 16325—16342

6. R. Torres, L. B. Thal, J. R. McBride, B. E. Cohen, S. J. Rosenthal. J. Phys. Chem. C, 128 (2024) 3632—3640

7. R. C. Pleus, V. Murashov. Physico-Chemical Properties of Nanomaterials, USA, Pan Stanford (2018)

8. M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin. Nat. Mater., 2 (2016) 141—153

9. Y. Hamanaka, T. Ogawa, M. Tsuzuki, K. Ozawa, T. Kuzuya. J. Lumin., 133 (2013) 121—124

10. C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, W. W. Yu. Nanomaterials, 6, N 1 (2016) 13

11. S. R. Thomas, C. W. Chen, M. Date, Y. C. Wang, H. W. Tsai, Z. M. Wang, Y. L. Chueh. RSC Adv., 6 (2016) 60643—60656

12. I. V. Martynenko, A. S. Baimuratov, F. Weigert, J. X. Soares, L. Dhamo, P. Nickl, I. Doerfel, J. Pauli, I. D. Rukhlenko, A. V. Baranov, U. Resch-Genger. Nano Res., 12 (2019) 1595—1603

13. A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D. R. T. Zahn, A. Eychmüller. J. Phys. Chem. C, 121 (2017) 9032—9042

14. O. Stroyuk, A. Raevskaya, F. Spranger, O. Selyshchev, V. Dzhagan, S. Schulze, D. R. T. Zahn, A. Eychmüller. J. Phys. Chem. C, 122 (2018) 13648—13658

15. O. Stroyuk, F. Weigert, A. Raevskaya, F. Spranger, C. Würth, U. Resch-Genger, N. Gaponik, D. R. T. Zahn. J. Phys. Chem. C, 123 (2019) 2632—2641

16. V. Dzhagan, O. Selyshchev, O. Raievska, O. Stroyuk, L. Hertling, N. Mazur, M. Valakh, D. R. T. Zahn. J. Phys. Chem. C, 124 (2020) 15511—1552

17. O. Stroyuk, O. Raievska, C. Kupfer, D. Solonenko, A. Osvet, M. Batentschuk, C. J. Brabec, D. R. T. Zahn. J. Phys. Chem. C, 125 (2021) 12185—12197

18. C. Du, A. Shang, M. Shang, X. Ma, W. Song. Sens. Actuators B Chem., 255 (2018) 926—934

19. G. Liang, W. Cao, D. Tang, H. Zhang, Y. Yu, J. Ding, J. Karges, H. Xiao. ACS Nano, 18 (2024) 10979—11024

20. Y. Chen, T. Chen, Z. Qin, Z. Xie, M. Liang, Y. Li, J. Lin. J. Alloys and Compd., 930 (2023) 167389

21. S. Mallick, P. Kumar, A. L. Koner. ACS Appl. Nano Mater., 2 (2019) 661—666

22. И. Г. Мотевич, Э. И. Зенькевич, А. Л. Строюк, А. Е. Раевская, О. М. Куликова, В. Б. Шейнин, О. И. Койфман, Д. Р. Т. Цан, Н. Д. Стрекаль. Журн. прикл. спектр., 87, № 6 (2020) 926—935 [I. G. Motevich, E. I. Zenkevich, A. L. Stroyuk, A. E. Raevskaya, O. M. Kulikova, V. B. Sheinin, О. I. Koifman, D. R. T. Zahn, N. D. Strekal. J. Appl. Spectr., 87, N 6 (2020) 1057—1066]

23. F. Qu, N. B. Li, H. Q. Luo. Langmuir, 29 (2013) 1199

24. Y. Q. Dong, R. X. Wang, G. L. Li, C. Q. Chen, Y. W. Chi, G. N. Chen. Anal. Chem., 84 (2012) 6220

25. В. И. Степуро. Вестн. Гродненского гос. ун-та, 5 (2001) 52

26. D. W. Marquardt. J. Soc. Ind. Appl. Math., 11 (1963) 431

27. E. Zenkevich, T. Blaudeck, V. Scheinin, O. Kulikova, O. Selyshchev, V. Dzhagan, O. Koifman, C. von Borczyskowski, D. R. T. Zahn. J. Mol. Struct., 1244 (2021) 131239

28. E. I. Zenkevich, V. B. Sheinin, O. M. Kulikova, O. I. Koifman. J. Porphyrins and Phthalocyanines, 27 (2023) 543—562

29. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi. J. Phys. Chem. B, 101 (1997) 9463—9475

30. N. Strekal. Nanoscience and Nanotechnology, 4, N 1 (2014) 16—21

31. Y. Hamanaka, T. Ogawa, M. Tsuzuki, K. Ozawa, T. Kuzuya. J. Lumin., 133 (2013) 121—124

32. A. Javier, D. Magana, T. Jennings, G. F. Strouse. Appl. Phys. Lett., 83 (2003) 1423—1425

33. X. Tang, W. B. A. Ho, J. M. Xue. J. Phys. Chem., 116 (2012) 9769—9773

34. X. Kang, L. Huang, Y. Yang, D. Pan. J. Phys. Chem., 119, N 14 (2015) 7933—7940

35. С. И. Покутний. ФТП, 34 (2000) 1120—1124

36. G. U. Bublitz, St. G. Boxer. Ann. Rev., 48 (1997) 213—243

37. Н. Стрекаль, С. Маскевич. Наука и инновации, 11 (2013) 62—65

38. S. A. Empedocles, D. J. Norris, M. G. Bawendi. Phys. Rev. Lett., 77 (1996) 3873—3876

39. Н. Д. Стрекаль. Фотофизические процессы в ансамблях полупроводниковых наночастиц CdSe/ZnS, Гродно, ГрГУ (2014)

40. L. E. Brus. J. Chem. Phys., 80, N 9 (1984) 4403—4409

41. E. I. Zenkevich, V. B. Sheinin, O. M. Kulikova, O. I. Koifman. Macroheterocycles, 16, N 3 (2023) 189—203

42. E. I. Zenkevich, M. V. Parkhatz, B. M. Dzhagarov, C. von Borczyskowski. J. Porphyrins and Phthalocyanines, 28 (2024) 549—570


Review

For citations:


Motevich I.G., Zenkevich E.I., Maskevich S.A., Shulga A.V., Strekal N.D. Spectral-Kinetic Characteristics of Photoluminescence of AIS/ZnS-PEI Semiconductor Quantum Dots in Aqueous Solutions and Their Application in Clinical Morphology. Zhurnal Prikladnoii Spektroskopii. 2025;92(3):359-367. (In Russ.)

Views: 75


ISSN 0514-7506 (Print)