Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of Fluorescent Dissolved Organic Matter Using Three-Dimensional Fluorescence Spectroscopy and Convolutional Neural Networks

Abstract

Fluorescent dissolved organic matter (FDOM) – particularly tryptophan (Trp), tyrosine (Tyr), and humic acid (HA) – serves as a crucial indicator in environmental monitoring. This study introduced a novel quantitative analysis approach for analyzing three-dimensional excitation-emission matrix spectra (3DEEMs) of FDOM using convolutional neural networks (CNNs). The performance of the CNN model was evaluated and compared with the self-weighting alternating trilinear decomposition (SWATLD) algorithm. Results revealed that the proposed model significantly outperforms the SWATLD algorithm. Specifically, the CNN model achieved R2, RMSE, and MAPE values of 0.964, 0.047, and 14.950%, respectively, while for the SWATLD algorithm, these values were 0.944, 0.062, and 17.439%. Augmentation of the original spectral dataset did not yield a substantial improvement in the performance of the SWATLD algorithm, but it significantly enhanced the prediction ability of the CNN model. This enhancement was evident in the improved R2, RMSE, and MAPE values of 0.989, 0.030, and 12.837%, highlighting the critical role of data augmentation in boosting the performance of the CNN model, especially when dealing with a limited dataset. Application of the CNN model to water samples from Laizhou Bay yielded satisfactory results, enabling a simple and rapid analysis of FDOM in seawater. Therefore, an accurate and convenient analytical model was developed based on EEMs and CNNs, which can swiftly determine the concentration of FDOM in the environment and provide valuable references for environmental monitoring and early warning.

About the Authors

J. Yang
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Shandong Key Laboratory of Coastal Environmental Processes; University of Chinese Academy of Sciences
China

Jianlian Yang

Yantai Shandong; Beijing



W. Feng
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Shandong Key Laboratory of Coastal Environmental Processes; University of Chinese Academy of Sciences
China

Weiwei Feng

Yantai Shandong; Beijing



Z. Cai
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Shandong Key Laboratory of Coastal Environmental Processes
China

Zongqi Cai

Yantai Shandong



H. Wang
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Shandong Key Laboratory of Coastal Environmental Processes
China

Huanqing Wang

Yantai Shandong



X. Liang
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Shandong Key Laboratory of Coastal Environmental Processes; University of Chinese Academy of Sciences
China

Yantai Shandong; Beijing



References

1. D. Vione, C. Minero, L. Carena, Environ. Sci. Process, 23, 1429–1442 (2021), https://doi.org/10.1039/D1EM00273B.

2. G. J. L. Wilson, C. Lu, D. J. Lapworth, A. Kumar, A. Ghosh, V. J. Niasar, S. Krause, D. A. Polya, D. C. Gooddy, L. A. Richards, Sci. Total Environ., 903, 166208 (2023), https://doi.org/10.1016/j.scitotenv.2023.166208.

3. J. Urban-Rich, J. T. McCarty, D. Fernández, J. L. Acuña, J. Exp. Mar. Biol. Ecol., 332, 96–105 (2006), https://doi.org/10.1016/j.jembe.2005.11.023.

4. Y. Zhou, K. Shi, Y. Zhang, E. Jeppesen, X. Liu, Q. Zhou, H. Wu, X. Tang, G. Zhu, Sci. Total Environ., 574, 1588–1598 (2017), https://doi.org/10.1016/j.scitotenv.2016.08.196.

5. H. K. Kwon, G. Kim, T.-H. Kim, S.-E. Park, W. C. Lee, J. Sea Res., 188, 102270 (2022), https://doi.org/10.1016/j.seares.2022.102270.

6. Y. Yamashita, T. Tosaka, R. Bamba, R. Kamezaki, S. Goto, J. Nishioka, I. Yasuda, T. Hirawake, J. Oida, H. Obata, H. Ogawa, Prog. Oceanography, 191, 102510 (2021), https://doi.org/10.1016/j.pocean.2020.102510.

7. P. G. Coble, Mar. Chem., 51, 325–346 (1996), https://doi.org/10.1016/0304-4203(95)00062-3.

8. N. M. Niloy, S. A. Habib, M. I. Islam, Md. M. Haque, M. Shammi, S. M. Tareq, Mar. Pollut. Bull., 195, 115467 (2023), https://doi.org/10.1016/j.marpolbul.2023.115467.

9. X. Wang, H. Zhang, E. Bertone, R. A. Stewart, S. P. Hughes, Environ. Model. Softw., 141, 105053 (2021), https://doi.org/10.1016/j.envsoft.2021.105053.

10. W.-T. Li, J. Jin, Q. Li, C.-F. Wu, H. Lu, Q. Zhou, A.-M. Li, Water Res., 93, 1–9 (2016), https://doi.org/10.1016/j.watres.2016.01.005.

11. Y. Dai, H. Wang, J. Wang, X. Wang, Z. Wang, X. Ge, Spectrochim. Acta. A: Mol. Biomol. Spectrosc., 273, 121059 (2022), https://doi.org/10.1016/j.saa.2022.121059.

12. M. C. Ortiz, S. Sanllorente, A. Herrero, C. Reguera, L. Rubio, M. L. Oca, L. Valverde-Som, M. M. Arce, M. S. Sánchez, L. A. Sarabia, Chemom. Intell. Lab. Syst., 200, 104003 (2020), https://doi.org/10.1016/j.chemolab.2020.104003.

13. A. B. F. Câmara, W. J. O. da Silva, A. C. de O. Neves, H. O. M. A. Moura, K. M. G. de Lima, L. S. de Carvalho, Talanta, 266, 125126 (2024), https://doi.org/10.1016/j.talanta.2023.125126.

14. A. Islam, G. Sun, A. N. Saber, W. Shang, X. Zheng, Y. Zhang, M. Yang, J. Environ. Sci., 122, 174–183 (2022), https://doi.org/10.1016/j.jes.2022.01.046.

15. M. Birenboim, Å. Rinnan, D. Kengisbuch, J. A. Shimshoni, Chemom. Intell. Lab. Syst., 232, 104717 (2023), https://doi.org/10.1016/j.chemolab.2022.104717.

16. S. Catena, S. Sanllorente, L. A. Sarabia, R. Boggia, F. Turrini, M. C. Ortiz, Microchem. J., 154, 104561 (2020), https://doi.org/10.1016/j.microc.2019.104561.

17. Y. Fu, W. Li, T. Liu, Z. Zhang, H. Li, J. Xu, M. Huang, Sci. Total Environ., 865, 160950 (2023), https://doi.org/10.1016/j.scitotenv.2022.160950.

18. H.-B. Wang, Y.-J. Zhang, X. Xiao, S.-H. Yu, W.-Q. Liu, Anal. Methods, 3, 688–695 (2011), https://doi.org/10.1039/C0AY00641F.

19. S. Wang, Q. Cheng, Y. Yuan, C. Wang, S. Ma, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 210, 260–265 (2019), https://doi.org/10.1016/j.saa.2018.11.012.

20. Z. Cheng, N. Zhao, G. Yin, X. Zhang, J. Li, W. Liu, Acta Opt. Sin., 41, 1430001 (2021), https://doi.org/10.3788/AOS202141.1430001.

21. P. Cheng, Y. Zhu, C. Cui, F. Wang, J. Pan, Meas. Control, 55 (2022), https://doi.org/10.1177/00202940221114902.

22. R.-Z. Xu, J.-S. Cao, G. Feng, J.-Y. Luo, Q. Feng, B.-J. Ni, F. Fang, Chem. Eng. J., 430, 132893 (2022), https://doi.org/10.1016/j.cej.2021.132893.

23. X. Wu, Z. Zhao, R. Tian, S. Gao, Y. Niu, H. Liu, Food Chem., 335, 127640 (2021), https://doi.org/10.1016/j.foodchem.2020.127640.

24. R. G. Zepp, W. M. Sheldon, M. A. Moran, Mar. Chem., 89, 15–36 (2004), https://doi.org/10.1016/j.marchem.2004.02.006.

25. A. Lawaetz, C. Stedmon, Appl. Spectrosc., 63, 936–940 (2009), https://doi.org/10.1366/000370209788964548.

26. T. Ohno, Environ. Sci. Technol., 36, 742–746 (2002), https://doi.org/10.1021/es0155276.

27. J. Pan, L. Xia, Q. Wu, Y. Guo, Y. Chen, X. Tian, Ecol. Inform., 70, 101706 (2022), https://doi.org/10.1016/j.ecoinf.2022.101706.

28. Y. Li, D.-G. Cai, Z.-H. Zhu, H. Xu, T.-F. Zheng, J.-L. Chen, S.-J. Liu, H.-R. Wen, Dalton Trans., 52, 4167–4175 (2023), https://doi.org/10.1039/D2DT03230A.

29. Z.-P. Chen, H.-L. Wu, J.-H. Jiang, Y. Li, R.-Q. Yu, Chemom. Intell. Lab. Syst., 52, 75–86 (2000), https://doi.org/10.1016/S0169-7439(00)00081-2.

30. H.-P. Wang, P. Chen, J.-W. Dai, D. Liu, J.-Y. Li, Y.-P. Xu, X.-L. Chu, TrAC Trends Anal. Chem., 153, 116648 (2022), https://doi.org/10.1016/j.trac.2022.116648.

31. A. Krizhevsky, I. Sutskever, G. E. Hinton, Adv. Neural Inf. Process. Syst., Curran Associates, Inc. (2012), https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (accessed April 16, 2024).

32. D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization (2017), arXiv:1412.6980v9, https://doi.org/10.48550/arXiv.1412.6980.

33. A. Yammine, J. Gao, A. H. Kwan, Bio Protoc, 9, e3253 (2019), https://doi.org/10.21769/BioProtoc.3253.

34. F. H. dos Santos Rodrigues, G. G. Delgado, T. Santana da Costa, L. Tasic, BBA Adv., 3, 100091 (2023), https://doi.org/10.1016/j.bbadva.2023.100091.

35. S. Determann, R. Reuter, P. Wagner, R. Willkomm, Part Oceanography Res. Pap., 41, 659–675 (1994), https://doi.org/10.1016/0967-0637(94)90048-5.

36. S. M. Henrichs, J. W. Farrington, Phys. Chem. Earth, 12, 435–443 (1980), https://doi.org/10.1016/00791946(79)90125-3.

37. S. S. Ruhala, J. P. Zarnetske, Sci. Total Environ., 575, 713–723 (2017), https://doi.org/10.1016/j.scitotenv.2016.09.113.

38. Y.-Y. Chang, H.-L. Wu, H. Fang, T. Wang, Z. Liu, Y.-Z. Ouyang, Y.-J. Ding, R.-Q. Yu, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 204, 141–149 (2018), https://doi.org/10.1016/j.saa.2018.06.031.

39. Yingxin Shang, Kaishan Song, Fengfa Lai, Lili Lyu, Ge Liu, Chong Fang, Junbin Hou, Sining Qiang, Xiangfei Yu, Zhidan Wen, Water Res., 230, 119540 (2023), https://doi.org/10.1016/j.watres.2022.119540.

40. M. H. Jeon, J. Jung, M. O. Park, S. Aoki, T.-W. Kim, S.-K. Kim, Mar. Chem., 235, 104008 (2021), https://doi.org/10.1016/j.marchem.2021.104008.

41. H. Daraei, E. Bertone, J. Awad, R. A. Stewart, C. W. K. Chow, J. Duan, A. Mussared, J. Van Leeuwen, J. Environ. Sci. (2023), https://doi.org/10.1016/j.jes.2023.06.011.


Review

For citations:


Yang J., Feng W., Cai Z., Wang H., Liang X. Determination of Fluorescent Dissolved Organic Matter Using Three-Dimensional Fluorescence Spectroscopy and Convolutional Neural Networks. Zhurnal Prikladnoii Spektroskopii. 2025;92(3):408.

Views: 4


ISSN 0514-7506 (Print)