Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Eco-Friendly Synthesis of Cu-ZnO Nanoparticles via Asystasia Gangetica Extracts: a Novel Response Surface Methodology-Based Strategy for Dye Degradation

Abstract

This study presents the eco-friendly synthesis of copper-doped zinc oxide nanoparticles (Cu-ZnO NPs) using Asystasia gangetica leaf extracts as a reducing and stabilizing agent. To reveal their structural, morphological, and optical properties, the synthesized nanoparticles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, ultraviolet-visible spectroscopy, and energy-dispersive X-ray spectroscopy. The dye degradation efficiency of Cu-ZnO NPs was evaluated for Rhodamine B dye under varying pH, nanoparticle concentration, dye concentration, and reaction time using response surface methodology. Statistical analysis using a central composite design showed that lower nanoparticle concentrations (50 ppm), higher dye concentrations (30 ppt), alkaline pH 9, and extended reaction times (120 min) resulted in optimal dye degradation. The ANOVA results, with a significant F-value and R2 values indicating a good fit, confirmed the model’s adequacy. This green synthesis approach offers a sustainable method for nanoparticle production and its practical application in environmental remediation, particularly in the degradation of synthetic dyes. These findings contribute to the advancement of nanotechnology for eco-friendly applications, with potential implications for wastewater treatment and environmental sustainability.

About the Authors

P. Cynthia
Manonmaniam Sundaranar University, Abishekapatti, Department of Botany, St. John’s College
India

Tirunelveli, Tamilnadu



D. A. Chelliah
Manonmaniam Sundaranar University, Abishekapatti, Department of Botany, St. John’s College
India

D. Abiya Chelliah

Tirunelveli, Tamilnadu



References

1. J. Yang, Z. Yang, Y. Wang, Z. Chen, J. Environ. Sci., 87, 366–388 (2020).

2. K. V. Karthik, A. V. Raghu, K. R. Reddy, R. Ravishankar, M. Shetti, C. V. Reddy, Chemosphere, 287, 132081 (2022).

3. C. Wang, L. Zhang, H. Li, H. Jiang, L. Cui, H. Xue, J. Alloys and Compd., 752, 209–216 (2018).

4. T. N. Q. Nguyen, V. V. M. Le, T. N. Pham, H. D. Vo, T. T. T. Dang T. V. Vo, T. T. Tran, Adv. Pharm. Sci., 6622048 (2021).

5. R. Saishri, N. Ravichandran, V. Vadivel, P. Brindha, Molecules, 7, 163–173 (2016).

6. A. Godfrey, T. Abirami, K. Jagadesan, J. Pharmacognosy and Phytochemistry, 7, 2453–2457 (2018).

7. Y. Chen, Z. Chen, L. Xu, H. Li, X. Shi, J. Alloys and Compd., 861, 158243 (2021).

8. H. Zhao, R. Wu, X. Wang, Y. An, W. Zhao, F. Ma, J. Chin. Chem. Soc., 67, 1016–1023 (2019).

9. K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, S. W. Hell, Chemistry, 16, 19950338 (2010).

10. N. Magalhaes, G. M. Simoes, C. Ramos, J. Samelo, A. C. Oliveira, F. Hal, J. P. P. Ramalho, M. J. Moreno, L. M. S. Loura, Molecules, 27, 35209208 (2022).

11. S. Kumar, S. Sreeja, M. Rajan, J. Alloys and Compd., 824, 153863 (2020).

12. J. Josun, P. Sharma, V. K. Garg, Results in Optics, 14, 100601 (2024).

13. A. Drozdz, K. Matusiak, Z. Setkowicz, M. Ciarach, K. Janeczko, C. Sandt, F. Borondics, D. Horak, M. Babic, J. Chwiej, Spectrochim. Acta Part A: Mol. and Biomolec. Spectrosc., 236, 118355 (2020).

14. M. A. Riyadh, A. K. Quraish, M. S. Kassim, A. A. Rawaa, J. M. Mahdi, A. K. Noor, N. J. Alwan, Nanoscience and Nanotechnology, 5, 1–6 (2015).

15. A. A. Edwards, B. D. Alexander, Encyclopedia of Spectroscopy and Spectrometry, 1, 511–519 (2017).

16. Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, J. Phys. Chem. C, 116, 5764–5772 (2012).

17. E. Arulkumar, S. S. Santhosh, S. Thanikaikarasan, Results Chem., 6, 101169 (2023).

18. U. Holzwarth, N. Gibson, Nat. Nanotechnol., 6, 534 (2011).

19. F. Zheng, Q. Jianxun, S. Yawei, L. Yiwei, Acta Crystallogr. F Struct. Biol. Cryst. Commun., 67, 521–523 (2011).

20. F. Zhang, X. Chen, F. Wu, Y. Ji, Physicochem. Eng. Aspects, 509, 474–483 (2016).

21. P. Raju, D. Deivatamil, J. A. Martin Mark, J. P. Jesuraj, J. Iran. Chem. Soc., 19, 861–872 (2022).

22. S. Satheeskumar, V. Jeevanantham, D. Tamilselvi, J. Ovon. Res., 14, 9–15 (2018).

23. G. Ye, L. Ma, L. Li, J. Liu, S. Yuan, G. Huang, Int. J. Coal Preparation and Utilization, 40, 131–145 (2017).

24. C. Andrade, Indian J. Psychol. Med., 41, 210–215 (2019).

25. N. Danbaba, I. Nkama, M. H. Badau, Int. J. Food Sci. Nut. Eng., 5, 40–52 (2015).

26. H. Jang, C. S. Lee, J. H. Kim, J. Kim, Chemosphere, 356, 141885 (2024).

27. C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, L. Hanzo, IEEE Wireless Commun., 24, 98–105 (2017).

28. O. A. Gkampelis, N. Markopoulou, C. Nikolakakis, I. K. Kyriakos, Processes, 9, 954 (2021).

29. A. Moghimi, A. Alborji, M. Abniki, Int. J. Bio-Inorg. Hybr. Nanomater., 83, 10 (2021).


Review

For citations:


Cynthia P., Chelliah D.A. Eco-Friendly Synthesis of Cu-ZnO Nanoparticles via Asystasia Gangetica Extracts: a Novel Response Surface Methodology-Based Strategy for Dye Degradation. Zhurnal Prikladnoii Spektroskopii. 2025;92(3):410.

Views: 10


ISSN 0514-7506 (Print)