Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

OPTIMIZATION OF SPECTRAL RANGE TO ENHANCE THE EFFECTIVENESS OF PHOTOTHERAPY FOR NEONATAL HYPERBILIRUBINEMIA

Abstract

It is shown that the effectiveness of phototherapy for hyperbilirubinemia of newborns using narrowband LED sources depends not only on the position of the LED emission spectrum peak within the absorption band of bilirubin but also on the width of the spectrum of incident radiation. It has been established that the extension of the spectral range of radiation by adding to the blue light band with lmax » 462 nm a green component with lmax » 505 nm (provided equal integrated power density) results in a more efficient decrease of the total bilirubin level in the blood of newborns. It is assumed that the effect is due to heterogeneity of spectral characteristics of bilirubin in a different microenvironment as well as to the dependence of the optimal wavelength for the pigment photoisomerization on the depth of location of blood vessels where reactions of the bilirubin phototransformation take place. Moreover, the extension of the spectral range of the incident radiation by addition of the green component increases irradiated volumes of blood where the photoisomerization reactions with a high quantum yield of lumirubin formation underlying the therapeutic effect of light upon treatment of hyperbilirubinemia are initiated.

About the Authors

V. Yu. Plavskii
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Russian Federation


A. V. Mikulich
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Russian Federation


I. A. Leusenko
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Russian Federation


A. I. Tretyakova
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Russian Federation


L. G. Plavskaya
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Russian Federation


N. S. Serdyuchenko
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus
Russian Federation


J. . Gao
Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences
Russian Federation


D. . Xiong
Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences
Russian Federation


X. . Wu
Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences
Russian Federation


References

1. American Academy of Pediatrics. Subcommittee on Hyperbilirubinemia, Pediatrics, 114, N 1 (2004) 297-316

2. J. F. Watchko. Res. Rep. Neonatol., 4 ( 2014)183-193

3. M. J. Maisels, J. F. Watchko, V. K. Bhutani, D. K. Stevenson. J. Perinatol., 32, N 9 (2012) 660-664

4. V. Yu. Plavskii. In “Bilirubin: Chemistry, Regulation and Disorder”, Eds. J. F. Novotny, F. Sedlacek, New York, Nova Science Publishers, Inc. (2012) 1-65

5. T. Xiong, Y. Qu, S. Cambier, D. Mu. Eur. J. Pediatr., 170, N 10 (2011) 1247-1255

6. M. J. Maisels, A. F. McDonagh. N. Engl. J. Med., 358, N 9 (2008) 920-928

7. V. K. Bhutani. Pediatrics, 128, N 4 (2011) 1046-1052

8. V. Yu. Plavskii. Biomed. Eng., 47, N 2 (2013) 91-95

9. V. Yu. Plavskii, A. I. Tret’yakova, G. R. Mostovnikova. J. Opt. Technol., 81, N 6 (2014) 341-348

10. D. A. Lightner, A. F. McDonagh. Acc. Chem. Res., 17, N 12 (1984) 417-424

11. V. Yu. Plavskii, V. N. Knukshto, A. S. Stasheuski, A. I. Tretyakova, A. V. Mikulich, L. G. Plavskaya, I. A. Leusenko, B. M. Dzhagarov. Abstr. 37th Meeting Am. Soc Photobiol. San Diego, California, June 14-19, 2014 (2014) 82

12. K. L. Tan. J. Pediatr., 114, N 1 (1989) 132-137

13. C. Vecchi, G. P. Dozelli, M. G. Migliorini. Pediatr. Res., 17, N 6 (1983) 461-463

14. C. Vecchi, G. P. Dozelli, G. Sbrana, R. Pratesi. J. Pediatr., 108, N 3 (1986) 452-456

15. H. Ayyash, E. Hadjigeorgiou, J. Sofatzis, A. Chatziioannou, D. Nicolopoulos, E. Sideris. Pediatrics, 111, N 6 (1987) 882-887

16. H. Ayyash, E. Hadjigeorgiou, J. Sofatzis, H. Dellagrammaticas, E. Sideris. Arch. Dis. Child., 62, N 8 (1987) 843-845

17. M. Amato, D. Inaebnit. Eur. J. Pediatr., 150, N 4 (1991) 274-276

18. G. P. Donzelli, S. Pratesi, G. Rapisardi, G. Agati, F. Fusi, R. Pratesi. Lancet, 346, N 8968 (1995) 184-185

19. F. Ebbesen, G. Agati, R.Pratesi. Arch. Dis. Child. Fetal. Neonatal. Ed., 88, N 5 (2003) 430-431

20. F. Ebbesen, P. Madsen, S. Støvring, H. Hundborg, G. Agati. Acta Paediatr., 96, N 6 (2007) 837-841

21. A. F. McDonagh, G. Agati, F. Fusi, R. Pratesi. Photochem. Photobiol., 50, N 3 (1989) 305-319

22. S. Onishi, S. Itoh, K. Isobe. Biochem J., 236, N 1 (1986) 23-29

23. В. Ю. Плавский, В. А. Мостовников, Г. Р. Мостовникова, А. И. Третьякова. Журн. прикл. спектр., 74, № 1 (2007) 108-119 [V. Yu. Plavskii, V. A. Mostovnikov, G. R. Mostovnikova, A. I. Tret’-yakova. J. Appl. Spectrosc., 74, N 1 (2007) 120-132]

24. V. Yu. Plavskii, V. A. Mostovnikov, A. I. Tret’yakova, G. R. Mostovnikova. J. Opt. Technol., 74, N 7 (2007) 446-454

25. A. A. Lamola, V. K. Bhutani, R. J. Wong, D. K. Stevenson, A. F. McDonagh. Pediatr. Res., 74, N 1 (2013) 54-60

26. A. A. Lamola, M. Russo. Photochem Photobiol., 90, N 2 (2014) 294-296

27. R. Pratesi, L. Ronchi, G. Cecchi, G. Sbrana, M. G. Migliorini, C. Vecchi, G. Donzelli. Photochem. Photobiol., 40, N 1 (1984) 77-83

28. С. А. Лысенко, М. М. Кугейко. Журн. прикл. спектр., 81, № 5 (2014) 761-769 [S. А. Lisenko, M. M. Kugeiko. J. Appl. Spectr., 81 (2014) 834-842]

29. G. Agati, F. Fusi, G. P. Donzelli, R. Pratesi. J. Photochem. Photobiol. B: Biol., 18, N 2-3 (1993) 197-203

30. D. S. Seidman, J. Moise, Z. Ergaz, A. Laor, H. J. Vreman, D. K. Stevenson, R. Gale. J. Perinatol., 23, N 2 (2003) 123-127

31. F. Ebbesen, P. K. Vandborg, P. H. Madsen, T. Trydal, L. H. Jakobsen, H. J. Vreman. Pediatr Res., 79, N 2 (2016) 308-312

32. T. Hegyi, M. Graff, V. Zapanta, I. M. Hiatt, T. R. Sisson. Am. J. Dis. Child., 140, N 10 (1986) 994-997

33. Г. Р. Мостовникова, В. А. Мостовников, В. Ю. Плавский, А. И. Третьякова, С. П. Андреев, А. Б. Рябцев. Опт. журн., 67, № 11 (2000) 60-63

34. Y. Uchida, Y. Morimoto, J. Haku, T. Nakagawa, T. Nishikubo, Y. Takahashi. J. Jpn. Soc. Premature Newborn Med., 23, N 2 (2011) 263-267

35. Y. Uchida, Y. Morimoto, T. Uchiike, T. Kamamoto, T. Hayashi, I. Arai, T. Nishikubo, Y. Takahashi. Early Hum. Dev., 91, N 7 (2015) 381-385

36. S. Pratesi, S. Di Fabio, C. Bresci, C. Di Natale, S. Bar, C. Dani. Am. J. Perinatol., 32, N 8 (2015) 779-784

37. G. Hart, R. Cameron. Arch. Dis. Child. Fetal Neonatal Ed., 90, N 5 (2005) F437-F440

38. H. J. Vreman, R. J. Wong, J. R. Murdock, D. K. Stevenson. Acta Paediatrica, 97, N 3 (2008) 308-316

39. S. D. P. Wentworth. Infant, 1, N 1 (2005) 14-19

40. K. L. Tan. Pediatr. Res., 16, N 8 (1982) 670-674

41. T. R. C. Sisson, N. Kendall, E. Shaw, L. Kechavarz-Oliai. J. Pediatr., 81, N 1 (1972) 35-38

42. N. Modi, A. J. Keay. Arch. Dis. Child., 58, N 6 (1983) 406-409

43. L. C. Mims, M. Estrada, D. S. Gooden, R. R. Caldwell, R. V. Kotas. J. Pediatr., 83, N 4 (1973) 658-662

44. P. K. Vandborg, B. M. Hansen, G. Greisen, F. Ebbesen. Pediatrics, 130, N 2 (2012) 352-357

45. Q. Peng, A. Juzeniene, J. Chen, L. O. Svaasand, T. Warloe, K.-E. Giercksky, J. Moan. Rep. Prog. Phys., 71, N 5 (2008) 056701-056728

46. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin. J. Phys. D: Appl. Phys., 38, N 15 (2005) 2543-2555

47. S. Onishi, S. Itoh, K. Isobe, M. Ochi, T. Kunikata, T. Imai. Biochem. J., 257, N 3 (1989) 711-714

48. A. A. Spector. J. Lipid Res., 16, N 3 (1975) 165-179

49. A. Robertson, S. Fink, W. Karp. J. Pediatr., 112, N 2 (1988) 291-294

50. P. Novotná, M. Urbanová. Biochim. Biophys. Acta, 1848, N 6 (2015) 1331-1340

51. V. Malhotra, J. W. Greenberg, L. L. Dunn, J. F. Ennever. Pediatr Res., 21, N 6 (1987) 530-533

52. N. Usharani, G. C. Jayakumar, J. R. Rao, B. Chandrasekaran, B. U. Nair. J. Microsc., 253, N 2 (2014) 109-118

53. F. Zsila. Biomacromolecules, 12, N 1 (2011) 221-227

54. V. Yu. Plavskii, V. A. Mostovnikov, A. I. Tret’yakova, G. R. Mostovnikova. J. Appl. Spectrosc., 75, N 3 (2008) 407-419

55. A. T. Costarino, J. F. Ennever, S. Baumgart, W. T. Speck, M. Paul, R. A. Polin. Pediatrics, 75, N 3 (1985) 519-522

56. K. Mreihil, P. Madsen, B. Nakstad, J. Š. Benth, F. Ebbesen, T. W. Hansen. Pediatr. Res., 78, N 1 (2015) 56-62

57. R. Pratesi, G. Agati, F. Fusi. Photochem. Photobiol., 40, N 1 (1984) 41-47

58. P. Novotná, I. Goncharova, M. Urbanová. Biochim. Biophys. Acta, 1838, N 3 (2014) 831-841

59. P. Novotná, F. Králík, M. Urbanová. Biophys Chem., 205 (2015) 41-50

60. О. А. Козленкова, Л. Г. Плавская, А. В. Микулич, И. А. Леусенко, А. И. Третьякова, В. Ю. Плавский. Изв. НАН Беларуси. Сер. физ.-мат. наук, № 1 (2016) 117-123


Review

For citations:


Plavskii V.Yu., Mikulich A.V., Leusenko I.A., Tretyakova A.I., Plavskaya L.G., Serdyuchenko N.S., Gao J., Xiong D., Wu X. OPTIMIZATION OF SPECTRAL RANGE TO ENHANCE THE EFFECTIVENESS OF PHOTOTHERAPY FOR NEONATAL HYPERBILIRUBINEMIA. Zhurnal Prikladnoii Spektroskopii. 2017;84(1):106-119. (In Russ.)

Views: 301


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)