Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Deterioration Extraction for Ancient Murals Via a Decision Tree with a Deterioration Index

Abstract

Mural painting is the earliest independent form of painting and involves the crystallization of ancient traditional painting arts. However, over time, various types of deterioration have influenced murals, among which the most common is the deterioration of the plaster layer. Existing extraction methods largely use the shape features obtained from digital images, which are influenced by the diversity of information on the murals. To overcome this drawback, hyperspectral technology was introduced to achieve accurate deterioration extraction. First, the spectral features of deterioration, with a focus on the plaster layer, were analyzed. The decision tree deterioration index was subsequently constructed to extract deterioration information. Combining the threshold of the near-infrared reflectance and the difference between the reflectance at 440 and 490 nm, our method was effective for complete extraction. The method achieved better visual results than other traditional extraction methods did. The precision, recall, F-measure, and overall accuracy were 0.7244, 0.7581, 0.7409, and 0.9680, respectively. Our method also has high threshold stability, yielding good results for other mural images.

About the Authors

K. Qiao
Beijing University of Civil Engineering and Architecture; Beijing Key Laboratory for Architectural Heritage Fine Reconstruction and Health Monitoring
China

Kezhen Qiao - School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture; Beijing Key Laboratory for Architectural Heritage Fine Reconstruction and Health Monitoring.

Beijing



M. Hou
Beijing University of Civil Engineering and Architecture; Beijing Key Laboratory for Architectural Heritage Fine Reconstruction and Health Monitoring
China

Miaole Hou - School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture; Beijing Key Laboratory for Architectural Heritage Fine Reconstruction and Health Monitoring.

Beijing



S. Lyu
Beijing University of Civil Engineering and Architecture; Beijing Key Laboratory for Architectural Heritage Fine Reconstruction and Health Monitoring
China

Shuqiang Lyu - School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture; Beijing Key Laboratory for Architectural Heritage Fine Reconstruction and Health Monitoring.

Beijing



L. Li
Yungang Academy
China

Lihong Li.

Shanxi



References

1. X. Deng, Y. Yu, Heritage Sci., 10 (2022), doi: 10.1186/s40494-022-00799-y.

2. H. Wang, Q. Li, Q. Zou, J. Comp. Cult. Heritage, 12, 1–21 (2019), doi: 10.1145/3280790.

3. Academy, D. Vol. GB/T 30237-2013 20 (General Administration of Quality Supervision, Inspection and Quarantine of the Peopl’s Republic of China; Standardization Administration of the People’s Republic of China, 2013).

4. A. R. Mahajan, G. H. Raisoni, Int. J. Recent Trends in Engineering (2009).

5. Liu Dongpo, Jin Haibin, Zheng Youming, Lu Heng, Sci. Conserv. Archaeology, 33, 1–8 (2021), doi: 10.16334/j.cnki.cn31-1652/k.20210102013.

6. B. Cornelis, et al., Signal Proc., 93, 605–619 (2013), doi: 10.1016/j.sigpro.2012.07.022.

7. T. Yang, S. Wang, H. Pen, Z.-X. Wang, J. Tianjin University of Science and Technology, 53, 932 (2020), doi: 10.11784/tdxbz201907054.

8. V. R. Mol, P. U. Maheswari, Heritage Sci., 9, 1–18 (2021), doi: 10.1186/s40494-021-00604-2.

9. S. Jaidilert, G. Farooque, IEEE 3rd Int. Conf. on Image, Vision and Computing (ICIVC), 143–148 (2018), doi: 10.1109/ICIVC.2018.8492735(2018).

10. J. Cao, Y. Li, H. Cui, Q. Zhang, Heritage Sci., 6, 1–12 (2018), doi: 10.1186/s40494-018-0235-9.

11. A. Pizurica, et al., IEEE Signal Proc. Magazine 32, 112–122 (2015), doi: 10.1109/MSP.2015.2411753.

12. P. Li, M. Sun, Z. Wang, B. Chai, Sci. Rep., 8 (2018), doi: 10.1038/s41598-018-34317-7.

13. Cao Peng-Hui, Lyu Shu-Qiang, Wang Wan-Fu, Gao Zhen-Hua, Hou Miao-Le, J. Graphics, 41, 930–938 (2020), doi: 10.11996/JG.j.2095-302X.2020060930.

14. Zhang Hao-yuan, Xu Dan, Luo Hai-ni, Yang Bing, J. Graphics, 42, 590–598 (2021), doi: 10.11996/JG.j.2095-302X.2021040590.

15. Zhang Ziying, Shui Wuyang, Zhou Mingquan, Xu Bokai, Zhou Hua, Appl. Res. Comp., 38, N 8 (2021), doi: 10.19734/j.issn.1001-3695.2020.09.0395.

16. D. Kwon, J. Yu, The Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2019), doi: 10.5194/isprs-archives-XLII-2-W15-639-2019.

17. M. Mishra, T. Barman, G. V. Ramana, J. Civil Struct. Health Monitoring (2022), doi: 10.1007/s13349-022-00643-8.

18. Q. Yuan, X. He, X. Han, H. Guo, Heritage Sci., 11, 1–11 (2023), doi: 10.1186/s40494-023-00895-7.

19. Y. Y. Zhao Huirong, Chen An, Ni Xueying, Wang Xinchao, J. Computer-Aided Design & Computer Graphics, 1–14 (2024), doi: 10.3724/SP.J.1089.202*.2023-00430.

20. R. Huang, W. Feng, M. Fan, Q. Guo, J.-Z. Sun, J. Ambient Intelligence and Humanized Computing, 1–8 (2020), doi: 10.1007/s12652-017-0656-4.

21. R. A. Sizyakin, et al., IEEE Access, 8, 74535–74552 (2020), doi: 10.1109/ACCESS.2020.2988856.

22. K. Yu, et al., Heritage Sci., 12 (2024), doi: 10.1186/s40494-024-01316-z.

23. V. Katyal, Aviral, ArXiv abs/1206.5157 (2012), doi: 10.48550/arXiv.1206.5157.

24. G. Hassan, et al., Proc. Comp. Science, 65, 612–622 (2015), doi: 10.1016/j.procs.2015.09.005.

25. N. Strisciuglio, G. Azzopardi, N. Petkov, ArXiv abs/1707.07747 (2017), doi: 10.1007/978-3-319-64689-3_9.

26. N. Kheradmandi, V. Mehranfar, Construction and Building Materials (2022), doi: 10.1016/j.conbuildmat.2021.126162.

27. R. Ali, J. H. Chuah, M. S. A. Talip, N. B. Mokhtar, M. A. Shoaib, Automation in Construction (2022), doi: 10.1016/j.autcon.2021.103989.

28. M. Hou, et al., J. Cultural Heritage, 34, 136–144 (2018), doi: 10.1016/j.culher.2018.04.004.

29. R. N. Clark, T. L. Roush, J. Geophys. Res., 89, 6329–6340 (1984), doi: 10.1029/JB089iB07p06329.

30. C. Peng, et al., Construction and Building Materials (2020), doi: 10.1016/j.conbuildmat.2020.120080.

31. J. Yang, X. Wang, J. Wang, C. Ye, J. Xiong, J. Appl. Rem. Sens., 042605 (2021), doi: 10.1117/1.JRS.15.042605.

32. J. Davis, M. H. Goadrich, Proc. 23rd Int. Conf. Machine Learning (2006), doi: 10.1145/1143844.1143874.


Review

For citations:


Qiao K., Hou M., Lyu S., Li L. Deterioration Extraction for Ancient Murals Via a Decision Tree with a Deterioration Index. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):552.

Views: 71


ISSN 0514-7506 (Print)