Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spin-Cyclotron Resonance in n-Type Indium Antimonide at Low Temperatures

Abstract

An interpretation of known experimental data on magnetic resonance measurements in tellurium-doped n-type indium antimonide crystals with compensation ratio K ≈ 0.1 of tellurium (hydrogen-like donors) by zinc (hydrogen-like acceptors) at 10 MHz frequency in a quantizing external magnetic field with induction from 0.17 to 1.70 T at liquid helium temperature is proposed. It is revealed that the observed resonance is caused by the absorption of an energy quanta of radio-frequency (10 MHz) radiation by c-band electrons. The electron transition between adjacent Landau levels mediated by the electric component of the radio wave, while transitions between Zeeman sublevels is driven by its magnetic component. The number of absorbed radio-frequency quanta at resonance increases from 3.9 · 104 to 1.6 · 105 with c-band electron concentration from 6 · 1015 to 5 · 1018 cm–3 at approximately constant compensation ratio. Calculations show that the width of the magnetic resonance lines (“from peak to peak” of the first derivative of the radio wave absorption signal on external magnetic field) is determined by fluctuations in the potential energy of electrons in the crystals due to their doping and compensation.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Minsk



A. N. Dzeraviaha
Belarusian State University
Belarus

Minsk



S. A. Vyrko
Belarusian State University
Belarus

Minsk



A. I. Kovalev
Belarusian State University
Belarus

Minsk



References

1. Handbook Series on Semiconductor Parameters. 1, Eds. M. Levinshtein, S. Rumyantsev, M. Shur, Singapore, World Scientific (1996)

2. É. I. Rashba. Sov. Phys. Usp., 7, N 6 (1965) 823—836

3. N. A. Poklonski, A. N. Dzeraviaha, S. A. Vyrko. J. Appl. Spectr., 87, N 4 (2020) 652—661

4. M. V. Kondrat’ev. Sov. Phys. Semicond., 20, N 8 (1986) 932—933

5. H. Kahlert, G. Bauer. Phys. Rev. B, 7, N 6 (1973) 2670—2682

6. G. Bemski. Phys. Rev. Lett., 4, N 2 (1960) 62—64

7. Н. А. Поклонский, С. А. Вырко, С. Л. Поденок. Статистическая физика полупроводников, Москва, КомКнига (2005)

8. O. Madelung. Semiconductors: Data Handbook, Berlin, Springer (2004)

9. N. A. Poklonski, A. N. Dzeraviaha, S. A. Vyrko, A. G. Zabrodskii, A. I. Veinger, P. V. Semenikhin. AIP Adv., 11, N 5 (2021) 055016(1—9)

10. M. V. Kondrat’ev. Sov. Phys. Solid State, 19, N 2 (1977) 357—358

11. M. Dressel, G. Grüner. Electrodynamics of Solids. Optical Properties of Electrons in Matter, Cambridge, Cambridge University Press (2003)

12. D. Jena. Quantum Physics of Semiconductor Materials and Devices, Oxford, Oxford University Press (2022)

13. N. B. Brandt, S. M. Chudinov. Sov. Phys. Usp., 25, N 7 (1982) 518—529

14. J. Hajdu, G. Landwehr. In: Strong and Ultrastrong Magnetic Fields and Their Applications, Ed. F. Herlach, Berlin, Springer (1985) 17—112

15. Yu. A. Firsov, V. L. Gurevich, R. V. Parfeniev, I. M. Tsidil’kovskii. In: Landau Level Spectroscopy (Modern Problems in Condensed Matter Science, 27.2), Eds. G. Landwehr, E. I. Rashba, Amsterdam, North-Holland (1991) 1181—1302

16. N. A. Poklonski, S. A. Vyrko, A. N. Dzeraviaha. Semiconductors, 52, N 6 (2018) 692—701

17. N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii. Phys. Solid State, 46, N 6 (2004) 1101—1106

18. B. K. Ridley. Quantum Processes in Semiconductors, Oxford, Oxford University Press (2013)

19. A. M. Mathai, H. J. Haubold. Probability and Statistics: A Course for Physicists and Engineers, Berlin, De Gruyter (2018)

20. Т. Л. Агекян. Теория вероятностей для астрономов и физиков, Москва, Наука (1974)

21. V. A. Margulis. Sov. Phys. Solid State, 23, N 3 (1981) 515—516

22. S. T. Pavlov, Yu. A. Firsov. Sov. Phys. Solid State, 7, N 9 (1965) 2131—2140

23. R. V. Parfen’ev, G. I. Kharus, I. M. Tsidil’kovskii, S. S. Shalyt. Sov. Phys. Usp., 17, 1 (1974) 1—19

24. F. G. Bass, I. B. Levinson. Sov. Phys. JETP, 22, N 3 (1966) 635—642

25. Yu. A. Firsov, V. L. Gurevich, R. V. Parfeniev, S. S. Shalyt. Phys. Rev. Lett., 12, N 24 (1964) 660—662

26. V. I. Ivanov-Omskii, B. T. Kolomiets, E. M. Sheregii. Sov. Phys. JETP Lett., 18, N 6 (1973) 199—200

27. N. A. Poklonski, S. A. Vyrko, A. I. Kovalev, A. N. Dzeraviaha. J. Phys. Commun., 2, N 1 (2018) 015013 (1—14)

28. Н. А. Поклонский, С. А. Вырко, А. Н. Деревяго. Журнал БГУ. Физика, № 2 (2020) 28—41

29. N. A. Poklonskii, S. A. Vyrko. J. Appl. Spectr., 69, N 3 (2002) 434—443


Review

For citations:


Poklonski N.A., Dzeraviaha A.N., Vyrko S.A., Kovalev A.I. Spin-Cyclotron Resonance in n-Type Indium Antimonide at Low Temperatures. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):476-483. (In Russ.)

Views: 82


ISSN 0514-7506 (Print)