

Spin-Cyclotron Resonance in n-Type Indium Antimonide at Low Temperatures
Abstract
An interpretation of known experimental data on magnetic resonance measurements in tellurium-doped n-type indium antimonide crystals with compensation ratio K ≈ 0.1 of tellurium (hydrogen-like donors) by zinc (hydrogen-like acceptors) at 10 MHz frequency in a quantizing external magnetic field with induction from 0.17 to 1.70 T at liquid helium temperature is proposed. It is revealed that the observed resonance is caused by the absorption of an energy quanta of radio-frequency (10 MHz) radiation by c-band electrons. The electron transition between adjacent Landau levels mediated by the electric component of the radio wave, while transitions between Zeeman sublevels is driven by its magnetic component. The number of absorbed radio-frequency quanta at resonance increases from 3.9 · 104 to 1.6 · 105 with c-band electron concentration from 6 · 1015 to 5 · 1018 cm–3 at approximately constant compensation ratio. Calculations show that the width of the magnetic resonance lines (“from peak to peak” of the first derivative of the radio wave absorption signal on external magnetic field) is determined by fluctuations in the potential energy of electrons in the crystals due to their doping and compensation.
About the Authors
N. A. PoklonskiBelarus
Minsk
A. N. Dzeraviaha
Belarus
Minsk
S. A. Vyrko
Belarus
Minsk
A. I. Kovalev
Belarus
Minsk
References
1. Handbook Series on Semiconductor Parameters. 1, Eds. M. Levinshtein, S. Rumyantsev, M. Shur, Singapore, World Scientific (1996)
2. É. I. Rashba. Sov. Phys. Usp., 7, N 6 (1965) 823—836
3. N. A. Poklonski, A. N. Dzeraviaha, S. A. Vyrko. J. Appl. Spectr., 87, N 4 (2020) 652—661
4. M. V. Kondrat’ev. Sov. Phys. Semicond., 20, N 8 (1986) 932—933
5. H. Kahlert, G. Bauer. Phys. Rev. B, 7, N 6 (1973) 2670—2682
6. G. Bemski. Phys. Rev. Lett., 4, N 2 (1960) 62—64
7. Н. А. Поклонский, С. А. Вырко, С. Л. Поденок. Статистическая физика полупроводников, Москва, КомКнига (2005)
8. O. Madelung. Semiconductors: Data Handbook, Berlin, Springer (2004)
9. N. A. Poklonski, A. N. Dzeraviaha, S. A. Vyrko, A. G. Zabrodskii, A. I. Veinger, P. V. Semenikhin. AIP Adv., 11, N 5 (2021) 055016(1—9)
10. M. V. Kondrat’ev. Sov. Phys. Solid State, 19, N 2 (1977) 357—358
11. M. Dressel, G. Grüner. Electrodynamics of Solids. Optical Properties of Electrons in Matter, Cambridge, Cambridge University Press (2003)
12. D. Jena. Quantum Physics of Semiconductor Materials and Devices, Oxford, Oxford University Press (2022)
13. N. B. Brandt, S. M. Chudinov. Sov. Phys. Usp., 25, N 7 (1982) 518—529
14. J. Hajdu, G. Landwehr. In: Strong and Ultrastrong Magnetic Fields and Their Applications, Ed. F. Herlach, Berlin, Springer (1985) 17—112
15. Yu. A. Firsov, V. L. Gurevich, R. V. Parfeniev, I. M. Tsidil’kovskii. In: Landau Level Spectroscopy (Modern Problems in Condensed Matter Science, 27.2), Eds. G. Landwehr, E. I. Rashba, Amsterdam, North-Holland (1991) 1181—1302
16. N. A. Poklonski, S. A. Vyrko, A. N. Dzeraviaha. Semiconductors, 52, N 6 (2018) 692—701
17. N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii. Phys. Solid State, 46, N 6 (2004) 1101—1106
18. B. K. Ridley. Quantum Processes in Semiconductors, Oxford, Oxford University Press (2013)
19. A. M. Mathai, H. J. Haubold. Probability and Statistics: A Course for Physicists and Engineers, Berlin, De Gruyter (2018)
20. Т. Л. Агекян. Теория вероятностей для астрономов и физиков, Москва, Наука (1974)
21. V. A. Margulis. Sov. Phys. Solid State, 23, N 3 (1981) 515—516
22. S. T. Pavlov, Yu. A. Firsov. Sov. Phys. Solid State, 7, N 9 (1965) 2131—2140
23. R. V. Parfen’ev, G. I. Kharus, I. M. Tsidil’kovskii, S. S. Shalyt. Sov. Phys. Usp., 17, 1 (1974) 1—19
24. F. G. Bass, I. B. Levinson. Sov. Phys. JETP, 22, N 3 (1966) 635—642
25. Yu. A. Firsov, V. L. Gurevich, R. V. Parfeniev, S. S. Shalyt. Phys. Rev. Lett., 12, N 24 (1964) 660—662
26. V. I. Ivanov-Omskii, B. T. Kolomiets, E. M. Sheregii. Sov. Phys. JETP Lett., 18, N 6 (1973) 199—200
27. N. A. Poklonski, S. A. Vyrko, A. I. Kovalev, A. N. Dzeraviaha. J. Phys. Commun., 2, N 1 (2018) 015013 (1—14)
28. Н. А. Поклонский, С. А. Вырко, А. Н. Деревяго. Журнал БГУ. Физика, № 2 (2020) 28—41
29. N. A. Poklonskii, S. A. Vyrko. J. Appl. Spectr., 69, N 3 (2002) 434—443
Review
For citations:
Poklonski N.A., Dzeraviaha A.N., Vyrko S.A., Kovalev A.I. Spin-Cyclotron Resonance in n-Type Indium Antimonide at Low Temperatures. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):476-483. (In Russ.)