

Multivariate Classification of Geographical Origin of Herbal Medicines Using Terahertz Pulsed Absorption Spectroscopy
Abstract
Multivariate classification models of the geographical origin of herbal medicines are developed based on the terahertz time-domain absorption spectroscopy. Four methods of cluster analysis are considered: hierarchical cluster analysis, k-means, k-nearest neighbors and classification trees. For classification of five geographical locations of Gastrodia roots, 12 spectral variables have been selected in the frequency range of 0.1–0.6 THz in the order of decreasing their standard deviation in the explored set and transformed to a six–dimensional principal component space with the Mahalanobis metric. The classification of the considered herbal medicines by two closest neighbors in this space is characterized by accuracy and precision of 0.98, and sensitivity of 0.982.
About the Authors
P. S. KolodochkaBelarus
Minsk
D. A. Korolko
Belarus
Minsk
P. A. Kulikovskaya
Belarus
Minsk
A. V. Lyakhnovich
Belarus
Minsk
X. Hongzhu
China
Xi Hongzhu.
WuHu
X. Wei
China
Xu Wei.
WuHu
M. A. Khodasevich
Belarus
Minsk
S. Jie
China
Shu Jie.
WuHu
References
1. F. M. Dayrit. ChemMedChem, 13, N 1 (2017) 124—125, doi: 10.1002/cmdc.201700632
2. Y.-Z. Liang, P. Xie, K. Chan. J. Chromatography, B, 812 (2004) 53—70, doi: 10.1016/j.jchromb.2004.08.041
3. R. Bauer. Drug Info J., 32, N 1 (1998) 101-—110, doi: 10.1177/009286159803200114
4. V. E. Tyler. J. Nat. Prod., 62, N 11 (1999) 1589—1592, doi: 10.1021/np9904049
5. W. J. Welsh, W. Lin, S. H. Tersigni, E. Collantes, R. Duta, M. S. Carey, W. L. Zielinski, J. Brower, J. A. Spencer, T. P. Layloff. Anal. Chem., 68, N 19 (1996) 3473—3482, doi: 10.1021/ac951164e
6. B. Huang, Y.-L. Cheng, X.-J. Cao Y. Li, R. Chen, J. Cao, C. Peng, D.-G. Wan, C.-H. Shen, J.-L. Guo. Chin. Trad. and Herbal Drugs, 48, N 5 (2017) 991—996, doi: 10.7501/j.issn.0253-2670.2017.05.025
7. L. N. Liu, Y.-L. Li, H.-Y. Jin, Sh. Ma. Chin. Trad. and Herbal Drugs, 48, N 6 (2017) 1220—1224, doi: 10.7501/j.issn.0253-2670.2017.06.028
8. H. B. Wang, L. Deng, Y.-C. Ma, C.-P. Yin. Chin. Trad. and Herbal Drugs, 48, N 12 (2017) 2516—2521, doi: 10.7501/j.issn.0253-2670.2017.12.024
9. J. B. Yao, H.H. Jin, H. H. He, R. W. Wang. Chin. Trad. and Herbal Drugs, 46, N 9 (2015) 1378—1380 doi: 10.7501/j.issn.0253-2670.2015.09.022
10. T. Li, C. Su, L.-X. Li, C. Li, M.-X. Si. Chin. Trad. and Herbal Drugs, 49, N 16 (2018) 3918—3925, doi: 10.7501/j.issn.0253-2670.2018.016.028
11. Y. F. Yang, J.-J. Wang, G.-J. Zhang, S.-Q. Sun, H.-Z. Wu, Y.-Z. Guo, L. Xiang, L.-N. Lu. Chin. Trad. and Herbal Drugs, 47, N 19 (2016) 3508–3512, doi: 10.7501/j.issn.0253-2670.2016.19.025
12. K. W. Yan, F. Wang, G. R. Mei, J. Y. Lu, L. Zhang, G. L. Fu. Chin. Trad. and Herbal Drugs, 46, N 20 (2015) 3096—3099
13. A. L. Skelbæk-Pedersen, M. Anuschek, T. K. Vilhelmsen, J. Rantanen, J. A. Zeitler. Int. J. Pharm. 588 (2020) 119769, doi: 10.1016/j.ijpharm.2020.119769
14. W. Li, F. Yan, Z.-Ch. Wang, Ch.-H. Liu. Spectrosc. Spectral Anal., 40 (2020) 2054—2058
15. W. Xiao, Zh. Wanqin, Zh. Shiping, Zh. Shengling, W. Weiji, X. Zhiyong. Spectrochim. Acta, Part A, 238 (2020) 118453, doi: 10.1016/j.saa.2020.118453
16. M. Hu, M. Tang, H. Wang, M. Zhang, Sh. Zhu, Zh. Yang, Sh. Zhou, H. Zhang, J. Hu, Y. Guo, X. Wei, Y. Liao. Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 254 (2021) 119611, doi: 10.1016/j.saa.2021.119611
17. J. Huang, B. Luo, Y. Cao, B. Li, M. Qian, N. Jia, W. Zhao. Fusion Front. Phys., 10 (2022), doi: 10.3389/fphy.2022.833278
18. M. A. Khodasevich, A. V. Lyakhnovich, H. Eriklioglu. J. Appl. Spectr., 89, N 2 (2022) 251—255, doi: 10.1007/s10812-022-01351-3
19. A. V. Oppenheim, R. W. Schafer, J. R. Buck. Discrete-Time Signal Processing. Prentice Hall, Englewood Cliffs (1999) 468—469
20. Z. M. Zhang, S. Chen, Y. Z. Liang. Analyst, 135 (2010) 1138—1146, doi: 10.1039/b922045c
21. https://code.google.com/archive/p/airpls [электронный ресурс], дата доступа: 18.01.2025
22. J. R. Beattie, F. W. L. Esmonde-White. Appl. Spectrosc., 75, N 4 (2021) 361—375, doi: 10.1177/0003702820987847
23. T. W. Liao. Pattern Recognition, 38 (2005) 1857—1874, doi: 10.1016/j.patcog.2005.01.025
24. P. Govender, V. Sivakumar. Atm. Poll. Res., 11 (2020) 40—56, doi: 10.1016/j.apr.2019.09.009
25. L. A. Berrueta, R. M. Alonso-Salces, K. Héberger. J. Chromatography, A, 1158 (2007) 196—214, doi: 10.1016/j.chroma.2007.05.024
26. S. Brown, R. Tauler, B. Walczak. Decision Tree Modeling, Comprehensive Chemometrics, 2nd ed., Elsevier (2020) 625—659
27. H. Cui, X. Zhang, J. Su, Y. Yang, Q. Fang, X. Wei. Optik, 126, N 23 (2015) 3533—3537, doi: 10.1016/j.ijleo.2015.08.066
28. D. Arthur, S. Vassilvitskii. Сonf. Mater. SODA ‘07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 7–9 January 2007, New Orleans, Louisiana, Society for Industrial and Applied Mathematics3600 University City Science Center Philadelphia, PAUnited States (2007) 1027—1035
29. C. Sammut, G. I. Webb. Leave-One-Out Cross-Validation: Encyclopedia of Machine Learning, Boston, US, Springer (2017) 600—601
30. D. Chicco, G. Jurman. BioData Mining, 16, N 1 (2023), doi: 10.1186/s13040-023-00326-0
31. Y. H. Yun, H. D. Li, B. C. Deng, D. S. Cao. Trends Anal. Chem., 113 (2019) 102—115, doi: 10.1016/j.trac.2019.01.018
Review
For citations:
Kolodochka P.S., Korolko D.A., Kulikovskaya P.A., Lyakhnovich A.V., Hongzhu X., Wei X., Khodasevich M.A., Jie S. Multivariate Classification of Geographical Origin of Herbal Medicines Using Terahertz Pulsed Absorption Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):513-523. (In Russ.)