Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Features of Synthesis and Analysis of Fluorescent Carbon Dots Derived From Plant Materials

Abstract

This study investigated the fluorescent properties of nanoparticles synthesized from mulberry leaf ethanolic extract using a hydrothermal method. The analysis confirmed the presence of carbon dot nanostructures exhibiting fluorescence emission peaking at 670 nm (under 405 nm excitation) with a quantum yield of 45%. Under quasi-continuous excitation at 405 nm on a silicon substrate, photobleaching of the nanoparticles was observed within 10–20 s of irradiation. In the absence of illumination, partial fluorescence recovery was detected, consisting in several percent within one minute and over 25% after 16 hours in darkness. Comparative spectral analysis of the initial leaf extract and the synthesized red-luminescent carbon dot fraction revealed similarities, suggesting the presence of unbound organic molecules with chromophoric groups in the medium. It was found that these chromophores accumulate in red blood cell membranes, enabling cell visualization; however, they exhibit both cytotoxic and phototoxic effects. Thus, the synthesis of carbon dots from multicomponent plant extracts may result in incomplete carbonization and degradation of chromophores, which can significantly influence the interpretation of the optical properties of the obtained nanostructures.

About the Authors

A. V. Bahdanava
Institute for Nuclear Problems, Belarusian State University; International Sakharov Environmental Institute of Belarusian State University
Belarus

Minsk



J. Zhang
Southern Medical University
China

Guangdong



N. V. Bel’ko
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



M. V. Parkhats
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



V. N. Chizhevsky
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



T. A. Kulahava
Institute for Nuclear Problems, Belarusian State University
Belarus

Minsk



D. S. Mogilevtsev
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



X. Zhang
Southern Medical University
China

Guangdong



References

1. A. Terracina, A. Armano, M. Meloni, A. Panniello, G. Minervini, A. Madonia, M. Cannas, M. Striccoli, L. Malfatti, F. Messina. ACS Appl. Mater. Interfaces, 14 (2022) 36038—36051

2. X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, P. Chen. Small, 11 (2015) 1620—1636

3. H. Li, X. Yan, D. Kong, R. Jin, C. Sun, D. Du, Y. Lin, G. Lu. Nanoscale Horizons, 5 (2020) 218—234

4. D. Benner, P. Yadav, D. Bhatia. Nanoscale Adv., 5 (2023) 4337—4353

5. A. Refaat, M. L. Yap, G. Pietersz, A. P. Walsh, J. Zeller, B. Rosal, X. Wang, K. Peter. J. Nanobiotechnol., 20 (2022) 450

6. W. Wang, B. Wang, H. Embrechts, C. Damm, A. Cadranel, V. Strauß, M. Distaso, V. Hinterberger, D. M. Guldi, W. Peukert. RSC Adv., 7 (2017) 24771—24780

7. A. Madonia, G. Minervini, A. Terracina, A. Pramanik, V. Martorana, A. Sciortino, C. M. Carbonaro, C. Olla, T. Sibillano, C. Giannini. ACS Nano, 17 (2023) 21274—21286

8. H. Ding, J.-S. Wei, N. Zhong, Q.-Y. Gao, H.-M. Xiong. Langmuir, 33 (2017) 12635—12642

9. T. Zhang, J. Zhu, Y. Zhai, H. Wang, X. Bai, B. Dong, H. Wang, H. Song. Nanoscale, 9 (2017) 13042—13051

10. K. Hola, M. Sudolská, S. Kalytchuk, D. Nachtigallová, A. L. Rogach, M. Otyepka, R. Zboril. ACS Nano, 11 (2017) 12402—12410

11. K. Jiang, X. Feng, X. Gao, Y. Wang, C. Cai, Z. Li, H. Lin. Nanomater., 9 (2019) 529

12. M. L. Liu, L. Yang, R. S. Li, B. B. Chen, H. Liu, C. Z. Huang. Green Chem., 19 (2017) 3611—3617

13. A. Longo, A. Sciortino, M. Cannas, F. Messina. Phys. Chem. Phys., 22 (2020) 13398—13407

14. Y.-Y. Liu, N.-Y. Yu, W.-D. Fang, Q.-G. Tan, R. Ji, L.-Y. Yang, S. Wei, X.-W. Zhang, A.-J. Miao. Nat. Comm., 12 (2021) 812

15. T. Kulahava, N. Belko, M. Parkhats, A. Bahdanava, S. Lepeshkevich, V. Chizhevsky, D. Mogilevtsev. J. Photochem. Photobiol. B: Biol., 248 (2023) 112800

16. A. A. Krasnovsky, Jr., K. V. Neverov, S. Y. Egorov. J. Photochem. Photobiol. B: Biol., 5 (1990) 245—254

17. H. A. Isakau, M. V. Parkhats, V. N. Knyukshto, B. M. Dzhagarov, E. P. Petrov, P. T. Petrov. J. Photochem. Photobiol. B: Biol., 92 (2008) 165—174

18. E. W. Chan, P. Y. Lye, S. K. Wong. Chin. J. Nat. Med., 14 (2016) 17—30

19. S. J. Schwartz, J. H. Von Elbe. J. Food Sci., 48 (1983) 7303—7306

20. А. Ганжа, Б. М. Джагаров, Е. И. Сагун. Фотобиология и мембранная биофизика, под ред. И. Д. Волотовского, Минск, Технопринт (1999) 244—267


Review

For citations:


Bahdanava A.V., Zhang J., Bel’ko N.V., Parkhats M.V., Chizhevsky V.N., Kulahava T.A., Mogilevtsev D.S., Zhang X. Features of Synthesis and Analysis of Fluorescent Carbon Dots Derived From Plant Materials. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):505-512. (In Russ.)

Views: 91


ISSN 0514-7506 (Print)