

Impact of Cobalt and Molybdenum Impregnation on the Structural and Acidic Properties of Zeolite Y
Abstract
Zeolite's possession of Brønsted acid sites and impregnated metals in its pores renders it highly advantageous for catalytic transformations that necessitate the presence of both metallic and acidic active sites such as hydroisomerization and hydrocracking reactions. This study explores the influence of cobalt (Co) and molybdenum (Mo) impregnation on the structural and acidic properties of zeolite Y. A series of CoMo-zeolite Y catalysts was synthesized using the wet impregnation method with varying metal concentrations. Characterization using X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), and pyridine-FTIR revealed that the introduction of Co and Mo modified the distribution and strength of Brønsted and Lewis acid sites, while the crystallinity of the zeolite Y framework was preserved. Notably, the Co6Mo catalyst exhibited an optimal Lewis/Brønsted acid ratio, highlighting the potential of these materials for bifunctional catalytic applications. These findings contribute to understanding the interplay between metal loading and acid properties, laying the groundwork for future studies on catalytic performance.
About the Authors
R. MahdiAlgeria
Roufaida Mahdi - Department of Process Engineering, Faculty of Applied Sciences, Laboratory of Dynamic Interactions and Reactivity of Systems.
Ouargla
H. Izza
Algeria
Hidaya Izza - Department of Process Engineering, Faculty of Applied Sciences, Laboratory of Dynamic Interactions and Reactivity of Systems.
Ouargla
O. Bacha
Algeria
Oussama Bacha - Department of Process Engineering, Faculty of Applied Sciences, Laboratory of Dynamic Interactions and Reactivity of Systems.
Ouargla
A. Magroud
Algeria
Ayoub Magroud - Department of Process Engineering, Faculty of Applied Sciences, Laboratory of Dynamic Interactions and Reactivity of Systems.
Ouargla
References
1. K. Tanabe, W. F. Hölderich, Appl. Catal. A Gen., 181, No. 2, 399–434 (1999).
2. J. Přech, Catal. Rev. Sci. Eng., 60, No. 1, 71–131 (2018).
3. A. Primo, H. Garcia, Chem. Soc. Rev., 43, No. 22, 7548–7561 (2014).
4. A. Corma, Chem. Rev., 95, No. 3, 559–614 (1995).
5. A. Humphries, D. H. Harris, P. O’connor, Fluid Catal. Crack. Sci. Technol., 76, 41–82 (1993).
6. Y. P. de Peña, W. Rondón, Am. J. Anal. Chem., 4, No. 8, 387–397 (2013).
7. A. Corma, Stud. Surf. Sci. Catal., 94C, 736–747 (1995).
8. A. P. Bolton, M. A. Lanewala, J. Catal., 18, No. 2, 154–163 (1970).
9. C. Schroeder, M. R. Hansen, H. Koller, Angew. Chem. Int. Ed., 57, No. 43, 14281–14285 (2018).
10. M. J. Nash, A. M. Shough, D. W. Fickel, D. J. Doren, R. F. Lobo, J. Am. Chem. Soc., 130, No. 8, 2460–2462 (2008).
11. J. A. Rabo, G. J. Gajda, Guidelines for Mastering the Properties of Molecular Sieves, 1, 273–297 (1990), doi: 10.1007/978-1-4684-5787-2_17.
12. S. Bordiga, C. Lamberti, F. Bonino, A. Travert, F. Thibault-Starzyk, Chem. Soc. Rev., 44, No. 20, 7262–7341 (2015).
13. C. Deng et al., Sci. Rep., 6, March, 1–13 (2016).
14. R. Baran, S. Dzwigaj, European Synchrotron Radiation Facility siminars. Grenoble, France Available, https://www.esrf.fr/home/events/Seminars/webinars/content-news/area-events/esrf-seminars-list/influence-of-the-preparation-conditions-on-nature-and-environment-of-transition-metal-species-in-zeo.html.
15. S. M. Wu, X. Y. Yang, C. Janiak, Angew. Chem. Int. Ed., 58, No. 36, 12340–12354 (2019).
16. J. T. Miller, B. L. Mojet, D. E. Ramaker, D. C. Koningsberger, Catal. Today, 62, No. 1, 101–114 (2000).
17. D. E. Ramaker, J. de Graaf, D. C. Koningsberger, J. A. R. van Veen, J. Catal., 203, No. 1, 7–17 (2001).
18. D. Kubička et al., J. Phys. Chem. B, 110, No. 10, 4937–4946 (2006).
19. B. L. Mojet, M. J. Kappers, J. T. Miller, D. C. Koningsberger, Stud. Surf. Sci. Catal., 101B, 1165–1174 (1996).
20. K. Hadjiivanov, Adv. Catalysis, 57, 99–318 (2014), doi: 10.1016/B978-0-12-800127-1.00002-3.
21. W. M. H. Sachtler, Z. Zhang, Adv. Catal., 39C, 129–220 (1993).
22. J. Penzien et al., J. Phys. Chem. B, 108, No. 13, 4116–4126 (2004).
23. M. Lefrancois, G. Malbois, J. Catal., 20, No. 3, 350–358 (1971).
24. V. Zholobenko, C. Freitas, M. Jendrlin, P. Bazin, A. Travert, F. Thibault-Starzyk, J. Catal., 385, 52–60 (2020).
25. J. Datka, A. M. Turek, J. M. Jehng, I. E. Wachs, J. Catal., 135, No. 1, 186–199 (1992).
26. P. G. G. Saha, Trans. Indian Ceram. Soc., 36, No. 5, 99–123 (1977).
27. K. D. Nugrahaningtyas, E. Heraldy, Rachmadani, Y. Hidayat, I. Kartini, Open Chem., 19, No. 1, 745–754 (2021).
28. F. Thibault-Starzyk, F. Maugé, Charact. Solid Mater. Heterog. Catal. From Struct. Surf. React., 3–48 (2012).
29. G. Medak, A. Puškarić, J. Bronić, Crystals, 13, 2 (2023).
30. R. Wahab, N. Ahmad, M. Alam, J. Ahmad, Mater. Sci. Eng. B, 265, 114994 (2021).
31. H. Lin, H. Chiu, H. Tsai, S. Chien, C. Wang, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 211, No. 1107, 472–489 (1952).
32. S. A. Halawy, Monatshefte fur Chemie, 134, No. 3, 371–380 (2003).
33. S. Sheik Saleem, G. Aruldhas, Pramana, 21, No. 4, 283–291 (1983).
Review
For citations:
Mahdi R., Izza H., Bacha O., Magroud A. Impact of Cobalt and Molybdenum Impregnation on the Structural and Acidic Properties of Zeolite Y. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):554.