Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Indirect Determination of Sulfate and Phosphate in Ternary Materials Using Microwave Digestion ICP–OES and Spectral Line Selection

Abstract

Trace impurity elements such as sulfur and phosphorus, along with impurity ions like sulfate and phosphate, have a significant impact on the performance of electrode materials. However, the presence of major elements, including nickel, cobalt, and manganese in ternary materials complicates the determination of these trace components. This study establishes an inductively coupled plasma–optical emission spectrometry (ICP–OES) analytical method for detecting sulfur and phosphorus in ternary materials, as well as indirectly determining the content of sulfate and phosphate through formula conversion. The research investigates the optimization of the microwave digestion acid system and evaluates the interference caused by high concentrations of coexisting elements, such as nickel, cobalt, and manganese, on the determination of phosphorus and sulfur spectral lines. A t-test comparison with ion chromatography revealed no statistically significant difference between the two analytical methods. The results demonstrate that the ICP–OES method provides high precision and accuracy, effectively addressing the challenge of determining sulfur, phosphorus, or sulfate, and phosphate content in ternary materials.

About the Authors

S. Wang
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
China

Shujia Wang.

Wushan, Tianhe, Guangzhou



P. Li
Guangzhou Xinhua University
China

Peishan Li - Guangzhou Xinhua University, School of Biomedical Engineering.

Guangzhou



Q. Zheng
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
China

Qiaoqing Zheng.

Wushan, Tianhe, Guangzhou



H. Liu
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
China

Hui Liu.

Wushan, Tianhe, Guangzhou



Q. Su
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
China

Qiucheng Su.

Wushan, Tianhe, Guangzhou



D. Li
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
China

Denian Li.

Wushan, Tianhe, Guangzhou



References

1. M. Jiang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater., 11 (2021).

2. Q. Jiang, N. Chen, D. Liu, S. Wang, H. Zhang, Nanoscale, 8, 11234–11240 (2016).

3. J. Li, J. Wu, S. Li, G. Liu, Y. Cui, Z. Dong, H. Liu, X. Sun, Chemsuschem, 14, 2721–2730 (2021).

4. S. Gao, L. Wang, C. Zhou, C. Guo, J. Zhang, W. Li, Chem. Eng. J., 426 (2021).

5. Z. Q. Wang, M. S. Wu, B. Xu, C. Y. Ouyang, J. Alloys and Compd., 658, 818–823 (2016).

6. Y. Liu, D. Ning, L. Zheng, Q. Zhang, L. Gu, R. Gao, J. Zhang, A. Franz, G. Schumacher, X. Liu, J. Power Sources, 375, 1–10 (2018).

7. J. Lee, S. Park, M. Beak, S. R. Park, A. R. Lee, S. H. Byun, J. Song, J. S. Sohn, K. Kwon, Materials, 14 (2021).

8. S. Prasad, D. Kunzru, Asian J. Chem., 15, 930–936 (2003).

9. W. Z. Zhao, B. Lu, S. N. Lv, C. F. Zhou, Y. Yang, New J. Chem., 44, 11224–11230 (2020).

10. D. V. Babos, V. C. Costa, E. R. Pereira, Microchem. J., 147, 628–634 (2019).

11. E. Tatár, V. G. Mihucz, B. Kmethy, G. Záray, F. Fodor, Microchem. J., 67, 73–81 (2000).

12. C. G. Kowalenko, Canad. J. Soil Science, 88, 733–747 (2008).

13. M. F. Mesko, M. G. Crizel, D. L. R. Novo, C. A. Hartwig, F. S. Rondan, C. A. Bizzi, Arab. J. Chem., 13, 2076–2083 (2020).

14. P. L. Buldini, S. Cavalli, J. L. Sharma, Microchem. J., 72, 277–284 (2002).

15. P. L. Mahanta, A. K. Singh, R. Radhamani, D. P. Rao, At. Spectrosc., 38, 99–105 (2017).

16. R. M. Pereira, M. G. Crizel, D. L. Novo, C. M. M. dos Santos, M. F. Mesko, Microchem. J., 145, 235–241 (2019).

17. X. Tan, Z. Wang, M. Liu, K. He, J. Appl. Spectrosc., 87, 194–199 (2020).

18. A. Lane, A. Gokhale, E. Werner, A. Roberts, A. Freeman, B. Roberts, V. Faundez, STAR Protocols, 3, 101334 (2022).

19. Y. K. Agrawal, S. K. Menon, R. Giridhar, Anal. Lett., 20, 829–837 (1987).

20. L. Tian, X. Song, T. Liu, A. Li, Y. Ning, X. Hua, D. Dong, Z. Song, D. Liang, Anal. Lett., 57, No. 14, 2215–2229 (2024), doi: 10.1080/00032719.2023.2289088.

21. A. S. Khan, A. Chow, Anal. Lett., Part A: Chem. Analysis, 16, 265–274 (1983).

22. M. J. Shaw, P. R. Haddad, Environ. Int., 30, 403–431 (2004).

23. X. J. Tan, Z. M. Wang, Z. L. Wang, J. Appl. Spectrosc., 85, 659–664 (2018).

24. G. Ningxin, J. Appl. Spectrosc., 87, 326–332 (2020).

25. A. F. Meysurova, A. A. Notov, J. Appl. Spectrosc., 83, 832–839 (2016).

26. H. B. Trinh, S. Kim, J. Lee, J.-C. Lee, J. Anal. At. Spectrometry, 37, 330–337 (2022).

27. V. Ruiz-Calero, M. T. Galceran, Talanta, 66, 376–410 (2005).


Review

For citations:


Wang S., Li P., Zheng Q., Liu H., Su Q., Li D. Indirect Determination of Sulfate and Phosphate in Ternary Materials Using Microwave Digestion ICP–OES and Spectral Line Selection. Zhurnal Prikladnoii Spektroskopii. 2025;92(4):555.

Views: 70


ISSN 0514-7506 (Print)