

Ligand-Binding Activity of Recombinant Tetracycline Antibiotics Receptor TetR as Determined by Fluorescence Spectroscopy
Abstract
The ligand-binding activity of recombinant receptor TetR towards tetracycline (Tc) and its analogues (TC) has been studied by fluorescence spectroscopy. The addition of Tc to the functionally active protein in a solution quenched TetR tryptophan fluorescence by 80% and greatly enhanced the emission of Tc. The formation of the TetR-Tc complex was manifested by the appearance of a band in the Tc fluorescence region with a maximum at 510 nm, resulting from non-radiative energy transfer (FRET effect) from an excited tryptophan residue at 280 nm to the ligand. Other TCs (4-epi-Tc and lymecycline) also bound to TetR, exhibiting the properties of fluorescent probes. The spectral effects of complexation were reduced or completely disappeared in cases of partially or completely denatured TetR in the presence of urea. Therefore, fluorescence spectroscopy can serve as a reliable tool for assessing the TC-binding activity of recombinant TetR in the course of its preparation, storage and technological processing for practical use as a key component of bioanalytical systems for the determination of tetracycline antibiotics in food.
About the Authors
T. S. SerchenyaBelarus
Minsk
V. S. Lapina
Belarus
Minsk
O. V. Sviridov
Belarus
Minsk
References
1. M. G. Bacanli. Arch. Toxic., 98 (2024) 1717—1725
2. M. M. J. Arsène, A. K. L. Davares, I. V. Podoprigora, L. A. Smolyakova, S. Souadkia, I. Khelifi, M. S. Das. Vet. World, 15, N 3 (2022) 662—671
3. И. С. Сазыкин, Л. Е. Хмелевцова, Е. Ю. Селиверстова, М. А. Сазыкина. Прикл. биохимия и микробиология, 57, № 1 (2021) 24—35
4. J. Filipek, K. Chalaskiewicz, A. Kosmider, M. Nielipinski, A. Michalak, M. Bednarkiewicz, M. Goslawski-Zeligowski, F. Prucnal, B. Sekula, A. J. Pietrzyk-Brzezinska. J. Struct. Biology, 216, N 2 (2024) 108071
5. S. E. Reichheld, Z. Yu, A. R. Davidson. Proc. Natl. Acad. Sci., 106, N 52 (2009) 22263—22268
6. W. Hinrichs, C. Fenske. Tetracyclines in Biology, Chemistry and Medicine, Birkhäuser, Basel (2001) 107—123
7. Y. Fan, J. Peng, J. Liu, J. Wang. Microchem. J., 199 (2024) 109931
8. V. K. Meyer, C. V Chatelle, W. Weber, R. Niessner, M. Seidel. Anal. Bioanal. Chem., 412, N 14 (2020) 3467—3476
9. S. Li, D. Chen, Z. Liu, S. Tao, T. Zhang, Y. Chen, L. Bao, J. Ma, Y. Huang, S. Xu, L. Wu, S. Chen. J. Hazard. Materials, 460 (2023) 132311
10. W. Q. Xia, J. Liu, J. P. Wang. Anal. Chim. Acta, 1276 (2023) 341609
11. G. Wang, W. Q. Xia, J. X. Liu, J. P. Wang, J. Liu. Microchem. J., 150 (2019) 104184
12. N. Moeller, E. Mueller-Seitz, O. Scholz, W. Hillen, A. A. Bergwerff, M. Petz. Eur. Food Res. Technol., 224, N 3 (2007) 285—292
13. О. В. Евдокимова, Е. В. Охремчук, А. А. Муратова, Л. Н. Валентович, К. И. Михайлопуло, И. И. Вашкевич, О. В. Свиридов. Сб. науч. тр. “Микробные биотехнологии: фундаментальные и прикладные аспекты”, Минск, Бел. навука (2023) 31—55
14. M. Takahashi, L. Altschmied, W. Hillen. J. Mol. Biol., 187, N 3 (1986) 341—348
15. S. E. Reichheld, A. R. Davidson. J. Mol. Biol., 361, N 2 (2006) 382—389
16. G. J. Palm, I. Buchholz, S. Werten, B. Girbardt, L. Berndt, M. Delcea, W. Hinrichs. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868, N 6 (2020) 140404
17. Т. С. Серченя, И. И. Вашкевич, О. В. Свиридов. Докл. НАН Беларуси, 54, № 6 (2010) 62—67
18. Т. С. Серченя, О. В. Свиридов. Докл. НАН Беларуси, 57, № 3 (2013) 89—94
19. К. И. Михайлопуло, Т. С. Серченя, Е. П. Киселева, Ю. Г. Чернов, Т. М. Цветкова, Н. В. Ковганко, О. В. Свиридов. Журн. прикл. спектр., 75, № 6 (2008) 859—866 [K. I. Mikhailopulo, T. S. Serchenya, E. P. Kiseleva, Yu. G. Chernov, T. M. Tsvetkova, N. V. Kovganko, O. V. Sviridov. J. Appl. Spectrosc., 75, N 6 (2008) 857—863]
20. G. Wang, H. C. Zhang, J. Liu, J. P. Wang. Anal. Biochem., 564-565 (2019) 40—46
21. W. Q. Xia, P. L. Cui. Microchem. J., 170, N 4 (2021) 106779
22. Д. А. Семенов, Т. П. Северинчик, О. С. Куприенко. Тез. докл. XХ междунар. науч. конф. “Молодежь в науке”, 20—22 сентября 2023 г., Минск, Бел. навука (2023) 776—778
23. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 2nd ed., New York, Kluwer Academic-Plenum Publ. (1999)
24. M. De Weert, L. Stella. J. Mol. Struct., 998, N 1-3 (2011) 144—150
25. M. De Weert, C. Schönbeck. Eur. J. Pharm. Sci., 203 (2024) 106930
26. E. R. Mojica, E. Nguyen, M. Rozov, F. V. Bright. J. Fluoresc., 24, N 4 (2014) 1183—1198
27. M. D. A. Dantas, H. A. Tenorio, T. I. B. Lopes, H. J. V. Pereira, A. J. Marsaioli, I. M. Figueiredo, J. C. C. Santos. Int. J. Biol. Macromol., 102 (2017) 505—514
28. M. Mukherjee, P. S. Sardar, S. Kr. Ghorai, S. K. Samanta, A. S. Roy, S. Dasgupta, S. Ghosh. PLOS One, 8, N 4 (2013) e6094
29. M. Takahashi, J. Degenkolb, W. Hillen. Anal. Biochem., 199, N 2 (1991) 197—202
30. T. Lederer, M. Kintrup, M. Takahashi, P. E. Sum, G. A. Ellestad, W. Hillen. Biochemistry, 35, N 23 (1996) 7439—7446
31. W. Xia, J. Liu, J. Wang. Foods, 11, N 23 (2022) 3850
32. A. G. Stephen, A. Kumar. Int. J. Mol. Sci., 25, N 3 (2024) 1764
Review
For citations:
Serchenya T.S., Lapina V.S., Sviridov O.V. Ligand-Binding Activity of Recombinant Tetracycline Antibiotics Receptor TetR as Determined by Fluorescence Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):603-611. (In Russ.)