

Formation and Propagation of Needle Light Beams
Abstract
The field formed by an optical scheme of two axicons with a small difference in cone angles is investigated using analytical and numerical methods. The region of formation of a Bessel beam (BB) with a wide central maximum by this scheme is found. A method for obtaining needle beams characterized by a large diameter is proposed based on diaphragming of indicated BBs at the first minimum of the intensity distribution. It is shown that these beams, in comparison with limited Gaussian beams of the same power, have suppressed diffraction divergence. A comparison is made of the powers of the needle PNB and limited Gaussian PG beams incident on the receiving aperture with its different sizes and locations z, and it is shown that the PNB/PG ratio increases with increasing z. It is established that diaphragming of the BBs at the second or third minimum allows one to form light beams whose diffraction divergence is smaller than in the case of needle beams. The potential of using beams obtained by diaphragming a BB with a wide central maximum at the second minimum of the intensity distribution for probing objects located at a distance of up to tens of meters is shown.
About the Authors
S. N. KurilkinaBelarus
Minsk
S. N. Dovydenko
Belarus
Minsk
References
1. K. Shimoda. J. Phys. Soc. Japan, 60 (1991) 450—454
2. А. М. Бельский. Вестн. БГУ, № 2 (1995) 8—10 [A. M. Bel’sky. Bull. BSU, N 2 (1995) 8–10]
3. R. Grunwald. Thin-Film Microoptics — New Frontiers of Spatio-Temporal Beam Shaping, Amsterdam, Elsevier (2007)
4. R. Grunwald, M. Bock. Adv. Phys. X, 5 (2020) 1736950
5. J. Yang, L. Gong, Y. Shen, L. V. Wang. Appl. Phys. Lett., 113 (2018) 181104
6. T. Grosjean, D. Courjan, D. V. Labeke. J. Microscopy, 210 (2003) 319—323
7. Y. Chen, A. Glaser, J. T. Liu. J. Biophoton., 10 (2016) 68—74
8. M. Rioux, R. Tremblay, P. A. Bélanger. Appl. Opt., 17 (1978) 1532—1536
9. M. Duocastella, C. B. Arnold. Laser Phot. Rev., 6 (2012) 607—621
10. R. Meyer, L. Froehly, R. Giust, J. Del Hoyo, L. Furfaro, C. Billet, F. Courvoisier. Appl. Phys. Lett., 114 (2019) 201105
11. G. Fuxi, W. Yang. Data Storage at the Nanoscale, Boca Raton, CRC Press, Taylor & Francis (2015) 26—28
12. H. Little, C. T. A. Brown, V. Garcés-Chávez, W. Sibbett, K. Dholakia. Opt. Express, 12 (2004) 2560—2563
13. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, K. Dholakia. Opt. Express, 14 (2006) 7125—7133
14. E. Yew, C. Sheppard. Opt. Express, 14 (2006) 1167—1174
15. Y. Li, Q. Zhang, W. Hong. Opt. Express, 20 (2012) 15427—15439
16. М. В. Федорюк. Журн. вычислит. математики и матем. физики, 2, № 1 (1962) 145—150 [M. V. Fedoryuk. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2, N 1 (1962) 145—150]
17. M. K. Al-Muhanna, S. N. Kurilkina, V. N. Belyi, N. S. Kazak. J. Optics, 13 (2011) 105703
18. С. Д. Алгазин. Изв. Тульского гос. ун-та. Естеств. науки, № 1 (2013) 132—141 [S. D. Algazin. Izvestiya Tula State University, N 1 (2013) 132—141]
Review
For citations:
Kurilkina S.N., Dovydenko S.N. Formation and Propagation of Needle Light Beams. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):668-673. (In Russ.)