

Preparation of Efficient and Stable CsPbI3 Perovskite Active Layers with Vacuum-Dynamic Method
Abstract
The dynamic vacuum-assisted thermal annealing method was employed to prepare CsPbI₃ perovskite active layers. CsPbI₃ is highly suitable for solar cells due to its high stability and optimal band gap (1.7 eV). Application of this method improved the active layer structure due to the reduction of defect states and nanopores, as well as the increase of crystalline grains size. The dynamic vacuum-assisted thermal annealing method effectively reduced trap-state density and suppressed recombination due to the faster removal of dimethylformamide (DMF). A comparative analysis of the optical and photovoltaic properties was conducted to evaluate the efficiency of perovskite solar cells (PSCs) fabricated using dynamic vacuum-assisted thermal annealing versus ambient-condition processing. As a result, the open-circuit voltage (Voc) of PSCs prepared by the vacuum-assisted method at low temperatures increased from 1.08 to 1.16 V. Additionally, the power conversion efficiency (PCE) of the active layers improved from 16.5 to 18.8%.
About the Authors
N. F. OtakulovaUzbekistan
Tashkent
M. A. Zakhidova
Uzbekistan
Tashkent
Sh. К. Nematov
Uzbekistan
Tashkent
Karshi
L. R. Nurumbetova
Uzbekistan
Tashkent
M. Saqlain
Pakistan
Lahore
B. Shahid
Pakistan
Lahore
A. A. Saparbaev
Uzbekistan
Tashkent
References
1. W.-M. Gu, Y. Zhang, K.-J. Jiang, G. Yu, Y. Xu, J.-H. Huang, Y. Zhang, F. Wang, Y. Li, Y. Lin. J. Mater. Chem. A, 10 (2022) 12882—12889
2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. J. Am. Chem. Soc., 131 (2009) 6050—6051
3. F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin, S.-H. Jang. J. Am. Chem. Soc., 142 (2020) 20134—20142
4. J. Zhang, J. Liu, A. Tan, J. Piao, Z. Fu. Chem. Commun., 56 (2020) 13816—13819
5. X. Liu, X. Wang, T. Zhang, Y. Miao, Z. Qin, Y. Chen, Y. Zhao. Angew. Chem. Int. Ed., 60 (2021) 12351—12355
6. T. Liu, J. Zhang, M. Qin, X. Wu, F. Li, X. Lu, Z. Zhu, A. K. Y. Jen. Adv. Funct. Mater., 31 (2021) 2009515
7. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. Science, 338 (2012) 643—647
8. Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang, Y. Zhao. Joule, 2 (2018) 2065—2075
9. R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore. Adv. Energy Mater., 6 (2016) 1502458
10. J. Tian, Q. Xue, Q. Yao, N. Li, C. J. Brabec, H. L. Yip. Adv. Energy Mater., 10 (2020) 2000183
11. H. Zhu, Y. Ren, L. Pan, O. Ouellette, F. T. Eickemeyer, Y. Wu, X. Li, S. Wang, H. Liu, X. Dong. J. Am. Chem. Soc., 143 (2021) 3231—3237
12. H. Zhu, B. Shao, J. Yin, Z. Shen, L. Wang, R.W. Huang, B. Chen, N. Wehbe, T. Ahmad, M. Abulikemu. Adv. Mater., 36 (2024) 2306466
13. R. Cheacharoen, N. Rolston, D. Harwood, K. A. Bush, R. H. Dauskardt, M. D. McGehee. Energy & Environ. Sci., 11 (2018) 144—150
14. G. Zheng, C. Zhu, J. Ma, X. Zhang, G. Tang, R. Li, Y. Chen, L. Li, J. Hu, J. Hong. Nature Commun., 9 (2018) 2793
15. Y. Guo, X. Yin, J. Liu, W. Que. J. Mater. Chem. A, 7 (2019) 19008—19016
16. F. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, C. H. Ng, Y. Zhang, Q. Shen, S. Hayase. Angew. Chem., 130 (2018) 12927—12931
17. P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu. J. Phys. Chem. Lett., 7 (2016) 3603—3608
18. Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu, S. Zhang. ACS Energy Lett., 2 (2017) 2219—2227
19. A. Saparbaev, C. Gao, D. Zhu, Z. Liu, X. Qu, X. Bao, R. Yang. J. Power Sources, 426 (2019) 61—66
20. B. Zhao, S.-F. Jin, S. Huang, N. Liu, J.-Y. Ma, D.-J. Xue, Q. Han, J. Ding, Q.-Q. Ge, Y. Feng. J. Am. Chem. Soc., 140 (2018) 11716—11725
21. Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao. Science, 365 (2019) 591—595
22. S. Yang, M. Wu, X. Lei, J. Wang, Y. Han, X. He, S. Liu, Z. Liu. ACS Energy Lett., 9 (2024) 4817—4826
23. J. Qiu, X. Mei, M. Zhang, G. Wang, S. Zou, L. Wen, J. Huang, Y. Hua, X. Zhang. Angew. Chem. Int. Ed., 63 (2024) e202401751
24. Y. Che, Z. Liu, Y. Duan, J. Wang, S. Yang, D. Xu, W. Xiang, T. Wang, N. Yuan, J. Ding. Angew. Chem. Int. Ed., 61 (2022) e202205012
25. J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang, D. Xu, Z. Fang, X. Lei, Y. Li, S. Liu. Adv. Mater., 35 (2023) 2210223
26. S. M. Yoon, H. Min, J. B. Kim, G. Kim, K. S. Lee, S. I. Seok. Joule, 5 (2021) 183—196
27. A. Saparbaev, M. Zhang, V. Kuvondikov, L. Nurumbetova, I.O. Raji, I. Tajibaev, E. Zakhidov, X. Bao, R. Yang. Solar Energy, 228 (2021) 405—412
28. E. Zakhidov, S. K. Nematov, A. Saparbaev, L. Nurumbetova, B. Khidirov, A. Y. Turguboev. J. Appl. Spectrosc., 90 (2023) 830—836
29. R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee. J. Phys. Chem. Lett., 7 (2016) 746—751
30. C.-Y. Chen, H.-Y. Lin, K.-M. Chiang, W.-L. Tsai, Y.-C. Huang, C.-S. Tsao, H.-W. Lin. Adv. Mater. (Deerfield Beach, Fla.), 29 (2017)
31. L. A. Frolova, D. V. Anokhin, A. A. Piryazev, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, P. A. Troshin. J. Phys. Chem. Lett., 8 (2017) 67—72
32. J. Huang, S. He, W. Zhang, A. Saparbaev, Y. Wang, Y. Gao, L. Shang, G. Dong, L. Nurumbetova, G. Yue. Solar RRL, 6 (2022) 2100839
33. W. Ke, I. Spanopoulos, C. C. Stoumpos, M. G. Kanatzidis. Nature Commun., 9 (2018) 4785
34. Y. Wang, T. Zhang, M. Kan, Y. Zhao. J. Am. Chem. Soc., 140 (2018) 12345—12348
35. T. Kirchartz, J. A. Márquez, M. Stolterfoht, T. Unold. Adv. Energy Mater., 10 (2020) 1904134
36. C. Li, F. Xu, Y. Li, N. Li, H. Yu, B. Yuanb, Z. Chen, L. Li, B. Cao. Solar Energy, 233 (2022) 271—277
Review
For citations:
Otakulova N.F., Zakhidova M.A., Nematov Sh.К., Nurumbetova L.R., Saqlain M., Shahid B., Saparbaev A.A. Preparation of Efficient and Stable CsPbI3 Perovskite Active Layers with Vacuum-Dynamic Method. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):679-688. (In Russ.)