

Spectroscopic and Thermoluminescence Glow Curve Analysis of Gd3+ Activated LaCePO4 Phosphor
Abstract
We report the synthesis and characterization of Gd3+ activated LaCePO4. The phosphors were synthesized by a modified solid-state reaction method with variable concentrations (0.5–2.5 mol%) of doping ions of Gd3+. Analyses of the sample’s structure have shown that it had a monoclinic structure with a single phase. Micro-crystal formation was seen using scanning electron microscopy (SEM) of particles ranging in size from ~100 nm to over 2 µm. FTIR confirmed the formation of LaCePO4:Gd3+ phosphor. Phosphor samples with varying doping ion concentrations were also shown via photoluminescence analysis. LaCePO4:Gd3+ phosphor emits intense near-UV-blue light by 275 nm excitation. The corresponding spectroscopic parameters were calculated using the CIE technique, and the coordinates (x = 0.17 and y = 0.20) were in the visible region. Based on the findings, phosphor produced in such a way might be used in laser applications. Thermoluminescence (TL) glow curve analysis for various UV exposure times (5–20 min) showed a good broad TL glow curve centered at 183°C. The broad TL glow curve was deconvoluted by the CGCD programme, and the corresponding trap parameters were calculated.
About the Authors
K. LakshmiIndia
Vijayawada
K. K. Rao
India
Seetharampuram, Narasapur
M. C. Rao
India
Vijayawada
V. Dubey
India
Shillong, Meghalaya
K. S. Babu
India
JNTUK Narasaraopet
А. Khan
India
Raipur, Chatisgarh
References
1. X. Li, J. Ma, J. Lumin., 131, 1355–1360 (2011).
2. Z. Zhang, J. Shi, X. Wang, S. Liu, X. Wang, J. Rare Earths, 34, 1103–1110 (2016).
3. A. E. Taunton, S. A. Welch, J. F. Banfield, Chem. Geol., 169, 371–382 (2000).
4. J. Zhang, G. M. Cai, L. W. Yang, Z. Y. Ma, Z. P. Jin, Inorg. Chem., 56, 12902–12913 (2017).
5. C. R. Kesavulu, C. Basavapoornima, C. S. D. Viswanath, C. K. Jayasankar, J. Lumin., 171, 51–57 (2016).
6. R. Balakrishnaiah, D. W. Kim, S. S. Yi, S. H. Kim, K. Jang, H. S. Lee, B. K. Moon, J. H. Jeong, Thin Solid Films, 518, 6145–6148 (2010).
7. Y. W. Zhang, Z. G. Yan, L. P. You, R. Si, C. H. Yan, Eur. J. Inorg. Chem., 4099–4104 (2003).
8. Y. P. Fang, A. W. Xu, R. Q. Song, H. X. Zhang, L. P. You, J. C. Yu, H. Q. Liu, J. Am. Chem. Soc., 125, 16025–16034 (2003).
9. W. S. Song, H. N. Choi, Y. S. Kim, H. Yang, J. Mater. Chem., 20, 6929–6934 (2010).
10. Y. li, Y. Zheng, Q. Wang, W. Cai, Y. Yu, Opt. Mater., 34, 1019–1022 (2012).
11. T. Gavrilović, J. Periša, J. Papan, K. Vuković, K. Smits, D. J. Jovanović, M. D. Dramićanin, J. Lumin., 195, 420–429 (2018).
12. P. C. S. Filho, O. A. Serra, J. Phys. Chem. C, 115, 636–646 (2011).
13. O. Lehmann, K. Kömpe, M. Haase, J. Am. Chem. Soc., 126, 14935–14942 (2004).
14. N. Niu, P. Yang, Y. Wang, W. Wang, F. He, S. Gai, D. Wang, J. Alloys Compd., 509, 3096–3102 (2011).
15. Y. Xia, Y. Huang, Q. Long, S. Liao, Y. Gao, J. Liang, J. Cai, Ceram. Int., 41, 5525–5530 (2015).
16. J. K. Hite, J. M. Zavada, ECS J. Solid State Sci. Tech., 8, No. 9, 527 (2019).
17. S. A. M. Abdel-Hameed, S. M. Abo-Naf, Y. M. Hamdy, J. Non-Cryst. Solids, 517, 106–113 (2019).
18. M. Mazhdi, M. J. Tafreshi, Appl. Phys. A, 124, No. 12, 1–8 (2018).
19. N. M. Maalej, A. Qurashi, A. A. Assadi, R. Maalej, M. N. Shaikh, M. Ilyas, M. A. Gondal, Nanoscale Res. Lett., 10, No. 1, 1–10 (2015).
20. H. Y. Morshidy, Z. M. Abd El-Fattah, A. A. Abul-Magd, M. A. Hassan, A. R. Mohamed, Opt. Mater., 113, 110881 (2021).
21. V. Singh, G. Sivaramaiah, J. L. Rao, S. Watanabe, T. G. Rao, S. S. Jagtap, P. K. Singh, J. Alloys Compd., 648, 1083–1089 (2018).
22. J. Lü, Y. Huang, Y. Tao, H. J. Seo, J. Alloys Compd., 500, 134–138 (2010).
23. X. Hu, S. Yan, L. Ma, G. Wan, J. Hu, Powder Technol., 192, 27–32 (2009).
24. R. Hussin, S. Hamdan, D. N. F. A. Halim, M. S. Husin, Mater. Chem. Phys., 121, 37–41 (2010).
25. G. Bekiaris, C. Peltre, L. S. Jensen, S. Bruun, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 168, 29–36 (2016).
26. F. Söderlind, H. Pedersen, R. M. Petoral Jr., P. O. Käll, K. Uvdal, J. Colloid Interface Sci., 288, 140–148 (2005).
27. D. Mithal, T. Kundu, Solid State Sci., 68, 47–54 (2017).
28. K. N. Shinde, S. J. Dhoble, Animesh Kumar, Physica B: Cond. Matter, 406, 94–99 (2011).
29. G. Blasse, J. Solid State Chem., 62, No. 2, 207–211 (1986).
30. D. L. Dexter, J. H. Schulman, J. Chem. Phys., 22, No. 6, 1063–1070 (1954).
31. J.W. Kaiser, W. Jeitschko, New Cryst. Struct., 217, No. 1, 25–26 (2002).
32. K. S. Chung, H. S. Choe, J. I. Lee, S. Y. Chang, Rad. Prot. Dosim., 115, 136–143 (2005).
33. S. Som, M. Choedhury, S. K. Sharma, Rad. Phys. Chem., 110, 51–58 (2015).
Review
For citations:
Lakshmi K., Rao K., Rao M., Dubey V., Babu K., Khan А. Spectroscopic and Thermoluminescence Glow Curve Analysis of Gd3+ Activated LaCePO4 Phosphor. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):699.