Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectroscopic and Thermoluminescence Glow Curve Analysis of Gd3+ Activated LaCePO4 Phosphor

Abstract

We report the synthesis and characterization of Gd3+ activated LaCePO4. The phosphors were synthesized by a modified solid-state reaction method with variable concentrations (0.5–2.5 mol%) of doping ions of Gd3+. Analyses of the sample’s structure have shown that it had a monoclinic structure with a single phase. Micro-crystal formation was seen using scanning electron microscopy (SEM) of particles ranging in size from ~100 nm to over 2 µm. FTIR confirmed the formation of LaCePO4:Gd3+ phosphor. Phosphor samples with varying doping ion concentrations were also shown via photoluminescence analysis. LaCePO4:Gd3+ phosphor emits intense near-UV-blue light by 275 nm excitation. The corresponding spectroscopic parameters were calculated using the CIE technique, and the coordinates (x = 0.17 and y = 0.20) were in the visible region. Based on the findings, phosphor produced in such a way might be used in laser applications. Thermoluminescence (TL) glow curve analysis for various UV exposure times (5–20 min) showed a good broad TL glow curve centered at 183°C. The broad TL glow curve was deconvoluted by the CGCD programme, and the corresponding trap parameters were calculated. 

About the Authors

K. Lakshmi
Department of Physics, Andhra Loyola College
India

Vijayawada



K. K. Rao
Department of Physics, Swarnandhra College of Engineering & Technology
India

Seetharampuram,  Narasapur



M. C. Rao
Department of Physics, Andhra Loyola College
India

Vijayawada



V. Dubey
Department of Physics, North-Eastern Hill University
India

Shillong, Meghalaya



K. S. Babu
Department of Mathematics, University College of Engineering Narasaraopet
India

JNTUK Narasaraopet



А. Khan
National Institute of Technology
India

Raipur, Chatisgarh



References

1. X. Li, J. Ma, J. Lumin., 131, 1355–1360 (2011).

2. Z. Zhang, J. Shi, X. Wang, S. Liu, X. Wang, J. Rare Earths, 34, 1103–1110 (2016).

3. A. E. Taunton, S. A. Welch, J. F. Banfield, Chem. Geol., 169, 371–382 (2000).

4. J. Zhang, G. M. Cai, L. W. Yang, Z. Y. Ma, Z. P. Jin, Inorg. Chem., 56, 12902–12913 (2017).

5. C. R. Kesavulu, C. Basavapoornima, C. S. D. Viswanath, C. K. Jayasankar, J. Lumin., 171, 51–57 (2016).

6. R. Balakrishnaiah, D. W. Kim, S. S. Yi, S. H. Kim, K. Jang, H. S. Lee, B. K. Moon, J. H. Jeong, Thin Solid Films, 518, 6145–6148 (2010).

7. Y. W. Zhang, Z. G. Yan, L. P. You, R. Si, C. H. Yan, Eur. J. Inorg. Chem., 4099–4104 (2003).

8. Y. P. Fang, A. W. Xu, R. Q. Song, H. X. Zhang, L. P. You, J. C. Yu, H. Q. Liu, J. Am. Chem. Soc., 125, 16025–16034 (2003).

9. W. S. Song, H. N. Choi, Y. S. Kim, H. Yang, J. Mater. Chem., 20, 6929–6934 (2010).

10. Y. li, Y. Zheng, Q. Wang, W. Cai, Y. Yu, Opt. Mater., 34, 1019–1022 (2012).

11. T. Gavrilović, J. Periša, J. Papan, K. Vuković, K. Smits, D. J. Jovanović, M. D. Dramićanin, J. Lumin., 195, 420–429 (2018).

12. P. C. S. Filho, O. A. Serra, J. Phys. Chem. C, 115, 636–646 (2011).

13. O. Lehmann, K. Kömpe, M. Haase, J. Am. Chem. Soc., 126, 14935–14942 (2004).

14. N. Niu, P. Yang, Y. Wang, W. Wang, F. He, S. Gai, D. Wang, J. Alloys Compd., 509, 3096–3102 (2011).

15. Y. Xia, Y. Huang, Q. Long, S. Liao, Y. Gao, J. Liang, J. Cai, Ceram. Int., 41, 5525–5530 (2015).

16. J. K. Hite, J. M. Zavada, ECS J. Solid State Sci. Tech., 8, No. 9, 527 (2019).

17. S. A. M. Abdel-Hameed, S. M. Abo-Naf, Y. M. Hamdy, J. Non-Cryst. Solids, 517, 106–113 (2019).

18. M. Mazhdi, M. J. Tafreshi, Appl. Phys. A, 124, No. 12, 1–8 (2018).

19. N. M. Maalej, A. Qurashi, A. A. Assadi, R. Maalej, M. N. Shaikh, M. Ilyas, M. A. Gondal, Nanoscale Res. Lett., 10, No. 1, 1–10 (2015).

20. H. Y. Morshidy, Z. M. Abd El-Fattah, A. A. Abul-Magd, M. A. Hassan, A. R. Mohamed, Opt. Mater., 113, 110881 (2021).

21. V. Singh, G. Sivaramaiah, J. L. Rao, S. Watanabe, T. G. Rao, S. S. Jagtap, P. K. Singh, J. Alloys Compd., 648, 1083–1089 (2018).

22. J. Lü, Y. Huang, Y. Tao, H. J. Seo, J. Alloys Compd., 500, 134–138 (2010).

23. X. Hu, S. Yan, L. Ma, G. Wan, J. Hu, Powder Technol., 192, 27–32 (2009).

24. R. Hussin, S. Hamdan, D. N. F. A. Halim, M. S. Husin, Mater. Chem. Phys., 121, 37–41 (2010).

25. G. Bekiaris, C. Peltre, L. S. Jensen, S. Bruun, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 168, 29–36 (2016).

26. F. Söderlind, H. Pedersen, R. M. Petoral Jr., P. O. Käll, K. Uvdal, J. Colloid Interface Sci., 288, 140–148 (2005).

27. D. Mithal, T. Kundu, Solid State Sci., 68, 47–54 (2017).

28. K. N. Shinde, S. J. Dhoble, Animesh Kumar, Physica B: Cond. Matter, 406, 94–99 (2011).

29. G. Blasse, J. Solid State Chem., 62, No. 2, 207–211 (1986).

30. D. L. Dexter, J. H. Schulman, J. Chem. Phys., 22, No. 6, 1063–1070 (1954).

31. J.W. Kaiser, W. Jeitschko, New Cryst. Struct., 217, No. 1, 25–26 (2002).

32. K. S. Chung, H. S. Choe, J. I. Lee, S. Y. Chang, Rad. Prot. Dosim., 115, 136–143 (2005).

33. S. Som, M. Choedhury, S. K. Sharma, Rad. Phys. Chem., 110, 51–58 (2015).


Review

For citations:


Lakshmi K., Rao K., Rao M., Dubey V., Babu K., Khan А. Spectroscopic and Thermoluminescence Glow Curve Analysis of Gd3+ Activated LaCePO4 Phosphor. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):699.

Views: 34


ISSN 0514-7506 (Print)