Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optimization of Synthesis Process and Photoluminescence of Eu3+-Doped NaSr4(BO3)3

Abstract

A series of europium Eu3+-doped orange-red emitting phosphors were synthesized through a high-temperature solid-phase reaction using NaSr4(BO3)3 as the host in an atmosphere of air. The effects of calcination temperature and the contents of boric acid and Eu3+ on the photoluminescent properties of the as-prepared phosphors were investigated. In particular, the addition of boric acid in excess of the stoichiometric ratio could significantly improve the single-phase purity of the host. Meanwhile, the synthesis times for the phosphors were also reduced. The crystal phases and fluorescent properties of NaSr4-x(BO3)3:xEu3+ were characterized using X-ray powder diffraction analysis and a fluorescence spectrophotometer, respectively. The luminescent intensity of the phosphor was highest at the calcination temperature of 880℃ for 3 h, which was the optimum condition for forming single-phase NaSr4(BO3)3 hosts. All prepared NaSr4(BO3)3 phosphors belonged to the cubic crystal system. The maximum excitation wavelength was 392 nm. The main emission peaks were observed at 591 nm (orange light) and 615 nm (red light), which corresponded to the 5D07F1 and 5D07F2 transitions of Eu3+, respectively. Furthermore, NaSr3.92(BO3)3:0.04Eu3+ reached the maximum intensity of the main emission peaks, and the red-emitting performance was outstanding. The ratio (R/O) of the intensities of the emission peaks of red and orange lights could be affected by changes in the contents of Eu3+, so as to enrich and simplify the strategies for improving the red-emitting light purity. This provides a basis for the development of high-brightness and high-color-purity red-emitting phosphors for LED chips excited by near-ultraviolet light.

About the Authors

Xiuyuan Zuo
Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology
China

Yingkou



Yicheng Xue
Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology
China

Yingkou



Zhengri Shao
Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology
China

Yingkou



Xiaoying Li
Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology
China

Yingkou



Yilin Guo
Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology
China

Yingkou



Xiaowei Fu
Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology
China

Yingkou



References

1. L. H. Gao, G. F. Wang, H. L. Zhu, W. J. Wei, G. F. Ou, Mater. Res. Bull., 70, 876–880 (2015).

2. J. V. Kavya, G. Jyothi, V. Lalan, K. G. Gopchandran, Chem. Phys. Impact, 8, 100576 (2024).

3. N. G. Kononova, V. S. Shevchenko, A. E. Kokh, A. K. Bolatov, B. M. Uralbekov, M. M. Burkitbayev, Kh. A. Abdullin, Cryst. Res. Technol., 52, 1700024 (2017).

4. M. S. Tarasenko, R. E. Nikolaev, A. M. Yakovleva, V. A. Trifonov, A. S. Sukhikh, N. G. Naumov, J. Struct. Chem., 64, 1715–1723 (2023).

5. A. Lupei, G. Aka, E. Antic-Fidancev, B. Viana, D. Vivien, P. Schehoug, J. Phys. Cond. Mat., 14, 1107–1117 (2002).

6. K. A. Denault, Z. Y. Cheng, J. Brgoch, S. P. DenBaars, R. Seshadri, J. Mater. Chem. C, 1, 7339–7345 (2013).

7. S. K. Omanwar, R. P. Sonekar, N. S. Bajaj, Borate Phosphors, CRC Press, 1st Ed. (2022).

8. Y. H. Wang, Y. J. Chen, X. J. Geng, Y. Yang, Z. Q. Li, X. Y. Zuo, J. Chem. Sci., 136, 16 (2024).

9. U. H. Kaynar, H. Aydin, A. S. Altowyan, J. Hakami, M. B. Coban, M. Ayvacikli, E. Ekdal Karali, A. Canimoglu, N. Can, Adv. Powder Technol., 35, 104695 (2024).

10. G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, E. Kh. Mamadzhanova, A. V. Danil’chik, V. Z. Zubelevich, E. V. Lutsenko, JETP Lett., 92, 497–501 (2010).

11. L. L. Sun, H. Guo, J. Liang, B. Li, X. Y. Huang, J. Lumin., 202, 403–408 (2018).

12. R. Z. Li, H. H. Li, C. K. Chang, J. Lumin., 243, 118659 (2022).

13. Z. Khan, N. B. Ingale, S. K. Omanwar, Optik, 127, 6062–6065 (2016).

14. İ. Pekgözlü, J. Appl. Spectrosc., 86, 508–511 (2019).

15. X. M. Ding, H. B. Liang, D. J. Hou, S. C. Jia, Q. Su, S. S. Sun, Y. Tao, J. Phys. D: Appl. Phys., 45, 365301 (2012).

16. N. S. Bajaj, S. K. Omanwar, J. Lumin., 148, 169–173 (2014).

17. Y. L. Zhang, C. Y. Li, R. Pang, L. L. Shi, S. Zhang, J. Q. Hao, L. H. Jiang, Q. Su, J. Rare Earth., 27, 320–322 (2009).

18. C. F. Guo, X. Ding, H. J. Seo, Z. Y. Ren, J. T. Bai, Opt. Laser Technol., 43, 1351–1354 (2011).

19. X. M. Zhang, X. B. Qiao, H. J. Seo, Curr. Appl. Phys., 11, 442–446 (2011).

20. R. Wang, J. Xu, C. Chen, Chin. J. Lumin., 32, 983–987 (2011).

21. L. Wu, X. L. Chen, H. Li, M. He, Y. P. Xu, X. Z. Li, Inorg. Chem., 44, 6409–6414 (2005).

22. X. M. Zhang, H. J. Seo, Physica, B, 407, 77–79 (2011).

23. P. Pradhan, S. Vaidyananthan, Dalton T, 54, 6060–6080 (2025).

24. Z. F. Wei, X. L. Chen, F. M. Wang, W. C. Li, M. He, Y. Zhang, J. Alloy. Compd., 327, 10–13 (2001).

25. B. R. Judd, Phys. Rev., 127, 750 (1962).

26. G. Blasse, Philips Res. Rep., 24, 131–141 (1969).

27. Z. H. Leng, L. L. Li, Y. Liu, N. N. Zhang, S. C. Gan, J. Lumin., 173, 171–176 (2016).

28. Y. Liu, G. X. Liu, J. X. Wang, X. T. Dong, W. S. Yu, Inorg. Chem., 53, 11457 (2014).

29. L. G. Van Uitert, J. Electrochem. Soc., 114, 1048–1053 (1967).

30. Y. J. Chen, X. Y. Zuo, L. J. Xiao, X. J. Geng, Y. Yang, Z. Q. Zhang, S. Qiu, Shen, S. Cao, J. Chin. Ceram Soc., 47, 494–500 (2019).


Review

For citations:


Zuo X., Xue Y., Shao Zh., Li X., Guo Y., Fu X. Optimization of Synthesis Process and Photoluminescence of Eu3+-Doped NaSr4(BO3)3. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):700.

Views: 36


ISSN 0514-7506 (Print)