

Preparation and Photodegradation of Ag/ZnO on Low-Concentration Ammonia Nitrogen Wastewater
Abstract
Ag/ZnO composite materials were prepared using a hydrothermal method based on the optimal experimental conditions for synthesizing ZnO materials. These composites were utilized in the photodegradation ofsimulated wastewater containing 50 mg/L ammonium nitrogen. The optimal composite ratio was determined through experimentation, and Ag/ZnO composites were characterized using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicated that the Ag/ZnO composites exhibit microstructural features similar to ZnO materials, characterized by flower-like morphologies composed of clustered porous sheets with high crystallinity. Compared to pure ZnO, the Ag/ZnO-5% composite demonstrated stronger absorption across the visible light spectrum and had a bandgap energy of approximately 3.17 eV. Additionally, the recombination rate of electron-hole pairs in Ag/ZnO composites was lower than that in ZnO. After a 30-minute dark reaction, the composite material achieved a degradation efficiency of 71.11% for the 50 mg/L ammonium nitrogen simulated wastewater under 250 W mercury lamp irradiation for 180 min.
About the Authors
Junsheng LiChina
Harbin
Meiqi Lv
China
Harbin
Fang Gu
China
Harbin
Jialun Xu
China
Harbin
Zhi Xia
China
Harbin
Chong Tan
China
Harbin
Jinlong Zuo
China
Harbin
References
1. S. Dechen, et al., Abs. Pape Am. Chem. Soc., 250 (2015).
2. J. Lin, et al., Mat. Sci. Sem. Proc., 87, 24–31 (2018).
3. Y. Chang, J Alloy Compd., 664, 538–546 (2016).
4. Q. Zhou, et al., Chin. J. Chem. Eng., 27, 2535–2543 (2019).
5. T. Babu, R. Antony, J. Environ. Chem. Eng., 7, 102840 (2019).
6. S. Ata, et al., Diam. Rel. Mater., 90, 26–31 (2018).
7. K. Pathak, et al., Vacuum, 157, 508–513 (2018).
8. H. Rebecca, N. Roxana, Russ. J. Phys. Chem. B, 106, 788–794 (2001).
9. X. Wu, et al., Appl. Surf. Sci., 358, 130–136 (2015).
10. R. Saravanan, et al., Mat. Sci. Eng. C Mater., 33, 2235–2244 (2013).
11. M. M. Sajid, et al., J. Clust. Sci., 33, 1–11 (2021).
12. A. Rezaei, et al., J. Mater. Sci.-Mater. El., 28, 6607–6618 (2017).
13. A. Muhammad, et al., Microelectron. Int., 40, 1–7 (2023).
14. Z. Yuanhui, et al., Inorg. Chem., 46, 6980(1–6) (2007).
15. H. Mou, et al., Appl. Catal. B Environ., 221, 565–573 (2018).
16. Y. Cheng, et al., Mater. Res. Bull., 48, 4287–4293 (2013).
17. K. Kotlhao, et al., MRS Adv., 3, 2129–2136 (2018).
18. S. Ghosh, et al., RSC Adv. (2012).
19. M. A. Chamjangali, et al., J. Brazil Chem. Soc., 24 (2013).
20. Z. Shen, et al., Sensor Actuat. B-Chem., 270, 492–499 (2018).
21. L. Shi, et al., Ceram. Int., 40, 3495–3502 (2014).
22. R. Georgekutty, et al., J. Phys. Chem. C, 112, 13563–13570 (2008).
23. S. P. Meshram, et al., Ceram. Int., 42, 7482–7489 (2016).
24. H. Mou, et al., Appl. Catal. B-Environ. Energy, 221, 565–573 (2018).
25. P. Fageria, et al., RSC Adv., 4, 24962–24972 (2014).
26. W. Lu, et al., J. Phys. Chem. C, 112, 16792–16800 (2008).
27. X. You, et al. Catal. Lett., 102, 247–250 (2005).
28. M. I. Din, et al., Anal. Lett., 51, 892–907 (2018).
29. Q. Zhang, et al., J. Alloy Compd., 563, 269–273 (2013).
30. X. Xiang, et al., New J. Chem., 42, 26 (2018).
Review
For citations:
Li J., Lv M., Gu F., Xu J., Xia Zh., Tan Ch., Zuo J. Preparation and Photodegradation of Ag/ZnO on Low-Concentration Ammonia Nitrogen Wastewater. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):702.