Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

β-Cyclodextrin Phenolphthalein Supramolecular System as Probe for Detecting Trace Tricyclazole by Competitive Host-Guest Inclusion

Abstract

The extensive use of tricyclazole pesticide poses a serious threat to humans and the ecosystem, thus there is an urgent need to develop a sensitive and rapid detection method. In this study, a novel β-cyclodextrin  (β-CD)/phenolphthalein (PP) supramolecular probe was designed for the determination of tricyclazole in water. Tricyclazole and β-CD formed a 1:1 inclusion complex in aqueous solution at 25 °C by using UV-visible spectra according to the Benesi-Hildebrand method. Phenolphthalein and tricyclazole compete to enter the hydrophobic cavity of β-CD due to host-guest recognition, causing changes in absorbance. Based on this principle, the β-CD/PP supramolecular probe exhibits a wide detection scope (1.0×10–5‒3.0×10–4 M) and moderate detection limits of 1.22×10–5 M for tricyclazole detection under the optimal conditions. The optimal geometries for the host and guest molecules were determined by density functional theory (DFT) calculations. Molecular docking analysis demonstrated the optimal PP and tricyclazole orientation inside the cavity of  β-CD, and revealed the inherent driving forces of the inclusion reaction between β-CD and the guest molecules. Gibbs free energy change (∆G) values indicate that β-CD/tricyclazole is more stable than β-CD/PP inclusion complex. In addition, the β-CD/PP probe exhibited a high selective performance toward tricyclazole in water, and the β-CD/PP probe can be applied to detect tricyclazole in real water samples with satisfactory recoveries (93.8‒101.8%). This simple strategy establishes the potential for determining other pesticides by host-guest recognition that match the β-CD hydrophobic cavity.

About the Authors

Ming Xiu Ma
School of Chemistry and Chemical Engineering, Ningxia University
China

Yinchuan



Xiaoyan Chen
School of Chemistry and Chemical Engineering, Ningxia University
China

Yinchuan



Bing Li
School of Chemistry and Chemical Engineering, Ningxia University
China

Yinchuan



Shujuan Ding
Ningxia Vocational Technical College of Industry & Commerce
China

Yinchuan



Zhiqiang Wu
School of Chemistry and Chemical Engineering, Key Laboratory of Green Catalytic Materials and Technology of Ningxia Province, Ningxia Normal University
China

Guyuan



Heping Li
School of Chemistry and Chemical Engineering, Ningxia University
China

Yinchuan



Wanyi Liu
School of Chemistry and Chemical Engineering, Ningxia University
China

Yinchuan



References

1. C. Q. Zhong, K. J. Wei, W. Q. Han, L. J. Wang, X. Y. Sun, J. S. Li, J. Electroanal. Chem., 705, 68–74 (2013).

2. S. D. Ayare, P. R. Gogate, Environ. Technol. Inn., 26, 102533 (2022), doi: 10.1016/j.eti.2022.102533.

3. Qamruzzaman, A. Nasar, J. Ind. Eng. Chem., 20, 897–902 (2014).

4. N. Laskar, D. Ghoshal, S. Gupta, Chem. Select., 7, e202201019 (2022), doi: 10.1002/slct.202201019.

5. L. Padovani, E. Capri, C. Padovani, E. Puglisi, M. Trevisan, Chemosphere, 62, 303–314 (2006).

6. Y.-C. Su, A.-Y. Lin, C.-C. Hu, T.-C. Chiu, Food Chem., 347, 129044 (2021), doi: 10.1016/j.foodchem.2021.129044.

7. E. D. Tsochatzis, U. Menkissoglu-Spiroudi, D. G. Karpouzas, R. Tzimou-Tsitouridou, Anal. Bioanal. Chem., 397, 2181–2190 (2010).

8. Y. Wang, H. Y. Jin, S. C. Ma, J. Lu, R. C. Lin, J. Chromatogr. A, 1218, 334–342 (2011).

9. K. Chen, Z. Shen, J. Luo, X. Wang, R. Sun, Appl. Surf. Sci., 351, 466–473 (2015).

10. H. Tang, D. Fang, Q. Li, P. Cao, J. Geng, T. Sui, X. Wang, J. Iqbal, Y. Du, J. Food Sci., 77, 105–109 (2012). 11. B. Wimmer, M. Pattky, L. G. Zada, M. Meixner, S. B. Haderlein, H.-P. Zimmermann, C. Huhn, Anal.

11. Bioanal. Chem., 412, 4967–4983 (2020).

12. Y. Li, Z. Wang, L. Sun, L. Liu, C. Xu, H. Kuang, Trend. Anal. Chem., 113, 74–83 (2019).

13. N. M. Dissanayake, J. S. Arachchilage, T. A. Samuels, S. O. Obare, Talanta, 200, 218–227 (2019).

14. Y. Yi, W. Zeng, G. Zhu, Talanta, 222, 121703 (2021), doi: 10.1016/j.talanta.2020.121703.

15. P. Saha, M. R. Rafe, Heliyon, 9, e19287 (2023), doi: 10.1016/j.heliyon.2023.e19287.

16. Q. Yu, G. Zhang, Y. N. Wang, H. C. Hao, R. Sun, Y. J. Xu, J. F. Ge, Dyes Pigments, 207, 110693 (2022), doi: 10.1016/j.dyepig.2022.110693.

17. Z. Hu, D. Zhang, F. Lu, W. Yuan, X. Xu, Q. Zhang, H. Liu, Q. Shao, Z. Guo, Y. Huang, Macromolecules, 51, 5294–5303 (2018).

18. F. Li, R. Liu, V. Dubovyk, Q. Ran, H. Zhao, S. Komarneni, Food Chem., 384, 132643 (2022), doi: 10.1016/j.foodchem.2022.132643.

19. Y. Yao, L. Zhang, J. Xu, X. Wang, X. Duan, Y. Wen, J. Electroanal. Chem., 713, 1–8 (2014).

20. M. Hetzer, C. Fleischmann, B. V. K. J. Schmidt, C. Barner-Kowollik, H. Ritter, Polymer, 54, 5141–5147 (2013).

21. C. Kouderis, S. Tsigoias, P. Siafarika, A. G. Kalampounias, Molecules, 28, 1147 (2023), doi: 10.3390/molecules28031147.

22. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

23. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 7, 3297–3305 (2005).

24. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 113, No. 18, 6378–6396 (2009).

25. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem., 32, 1456–1465 (2011).

26. D. Baghel, M. K. Banjare, J. Mol. Liq., 389, 122867 (2023), doi: 10.1016/j.molliq.2023.122867.

27. T. Wang, B. Li, H. Si, L. Lin, Surf. Interface Anal., 43, 1532–1538 (2011).

28. B. Sahu, R. Kurrey, B. R. Khalkho, M. K. Deb, Colloids Surf. A Physicochem. Eng. Aspects, 654, 129947 (2022), doi: 10.1016/j.colsurfa.2022.129947.

29. S. Soltani, M. Kadri, V. Kaipanchery, A. Stachowicz-Ku’snierz, B. Korchowiec, M. Rogalski, P. Magri, J. Korchowiec, J. Mol. Struct., 1295, 136645 (2024), doi: 10.1016/j.molstruc.2023.136645.

30. W. Heng, Z. Jie, Y. X. Nan, Y. Dan, C.L.Xia, R. Carl, Y. L. Guo, T. Zhu, X. Xin, Dyes Pigments, 199, 110076 (2022), doi: 10.1016/j.dyepig.2021.110076.

31. V. V. Cat, N. X. Dinh, L. T. Tam, N. V. Quy, V. N. Phan, A.-T. Le, Mater. Today Commun., 100639 (2019), doi: 10.1016/j.mtcomm.2019.100639.

32. N. Hussain, H. Pu, D.-W. Sun, Food Chem., 350, 129025 (2021), doi: 10.1016/j.foodchem.2021.129025.

33. Y.-S. Pan, T. Wu, C.-C. Hu, T.-C. Chiu, C.-H. Yeh, Y.-W. Lin, J. Food Drug Anal., 31, 302–314 (2023).

34. S. Wei, X. Wang, X. Zhao, K. Zhao, L. Xu, Y. Chen, Anal. Chim. Acta, 1283, 341958 (2023), doi: 10.1016/j.aca.2023.341958.

35. S. E. Pérez-Figueroa, E. A. Galván-García, D. Nivón-Ramírez, E. Ramos, R. Gómez-Balderas, J. Mol. Liq., 396, 123995 (2024), doi: 10.1016/j.molliq.2024.123995.

36. S. Mohandoss, T. N. J. I. Edison, R. Atchudan, S. Palanisamy, N. M. Prabhu, A. A. Napoleon, S. G. You, Y. R. Lee, J. Mol. Liq., 319, 114358 (2020), doi: 10.1016/j.molliq.2020.114358.

37. S. Mohandoss, N. Ahmad, M. R. Khan, Y. R. Lee, J. Mol. Liq., 385, 122411 (2023), doi: 10.1016/j.molliq.2023.122411.


Review

For citations:


Ma M., Chen X., Li B., Ding Sh., Wu Zh., Li H., Liu W. β-Cyclodextrin Phenolphthalein Supramolecular System as Probe for Detecting Trace Tricyclazole by Competitive Host-Guest Inclusion. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):703.

Views: 43


ISSN 0514-7506 (Print)