Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectral Decomposition Method for Water Chemical Oxygen Demand Measurement Based on UV-Vis Absorption Spectroscopy

Abstract

We introduce a spectral decomposition method by modifying the GMM (Gaussian mixture module) algorithm. The first key point is to circumvent the process of random data generation for less error; the second key point is to replace the Gaussian model with a bi-Gaussian model to overcome the limitations of conventional symmetric Gaussian approximations. Comparative analysis with the Levenberg–Marquardt algorithm and standard GMM approaches demonstrates the superior accuracy of our method, as evidenced by the minimization of spectral reconstruction errors across all tested wavelength regimes. The effectiveness of this decomposition method for chemical oxygen demand (COD) detection was assessed via a series of experiments with real samples of sewage from various plants. The analysis showed less root mean squared error (RMSE) value by using the B-band of the benzene ring after the procedure of decomposition in contrast to the methods of peak searching and fixed wavelengths. The proposed method can improve the environmental suitability of COD detection effectively.

About the Authors

Yingtian Hu
College of Information Engineering, Zhejiang University of Technology
China

Hangzhou



Wenjie Miao
College of Information Engineering, Zhejiang University of Technology
China

Hangzhou



Zhize He
College of Information Engineering, Zhejiang University of Technology
China

Hangzhou



Enyang Miao
College of Information Engineering, Zhejiang University of Technology
China

Hangzhou



Dongdong Zhao
College of Computer Science and Technology, Zhejiang University of Technology
China

Hangzhou



References

1. G. Langergraber, J. Gupta, A. Pressl, F. Hofstaedter, W. Lettl, A. Weingartner, N. Fleischmann, Water Sci. and Tech., 50, No. 10, 73–80 (2004).

2. G. Langergraber, A. Weingartner, N. Fleischmann, Water Sci. and Tech., 50, No. 11, 13–20 (2004).

3. Y. S. Yuan, J. X. Fu, J. Liu, Liaoning Chem. Ind., 39, No. 4, 448–450, 456 (2010).

4. Y. Q. Zhao, H. M. Wang, Z. Y. Liu, Y. C. Li, S. F. Fan, Chin. J. Sci. Instrument, 31, No. 9, 1927–1932 (2010).

5. Y. T. Hu, X. P. Wang, Sensors and Actuators B: Chem., 239, 718–726 (2017).

6. B. Q. Ye, X. J. Cao, H. Liu, Y. Wang, B. Tang, C. H. Chen, Q. Chen, Front. Environ. Sci., 10, No. 938, 239 (2022).

7. M. Lu, Y.-t. Hu, Y. Gao, X.-P. Wang, Spectrosc. and Spectr. Analysis, 37, No. 12, 3797–3802 (2017).

8. P. Massicotte, S. Markager, Marine Chem., 180, 24–32 (2016).

9. X. Y. Wang, J. F. He, F. J. Nip, Z. L. Yuan, L. Liu, Spectrosc. Spectr. Analysis, 42, No. 1, 152–157 (2022).

10. Y. L. Chen, L. K. Dai, Anal. Sci., 35, No. 5, 511–515 (2019).

11. B. B. Cael, E. Boss, Opt. Express, 25, No. 21, 25486–25491 (2017).

12. S. K. Karimvand, H. Abdollahi, J. Chemometrics, 32, No. 12, e3074 (2018).

13. J. Li, L. Dai, H. Ruan, J. Chem. Ind. and Eng. (China), 63, No. 7, 2128–2135 (2012).

14. D. Zhu, S. Sun, H. Yang, C. Zhang, Q. Zhu, K. Li, Y. Shi, Y. Chen, Acta Metrologica Sinica, 42, No. 10, 1386–1392 (2021).

15. R. Wilson, “Multiresolution Gaussian Mixture Models: Theory and Applications”, Department of Computer Science (2000).

16. H. Q. Huang, Z. S. He, F. Fang, D. C. Gong, W. C. Ding, At. Energy Sci. and Technology, 44, No. 9, 1114–1119 (2010).

17. T. K. Vu, M. K. Hoang, H. L. Le, ICT Express, No. 2, 120–123 (2019).


Review

For citations:


Hu Y., Miao W., He Zh., Miao E., Zhao D. Spectral Decomposition Method for Water Chemical Oxygen Demand Measurement Based on UV-Vis Absorption Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2025;92(5):707.

Views: 28


ISSN 0514-7506 (Print)