Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Bands of Aluminum Monoxide for Alumina Determination in Cryolites by Means of Laser-Induced Breakdown Spectroscopy

Abstract

Alumina (Al2O3), added to melt of the cryolite (Na3AlF6) in an electrolysis bath to produce metallic aluminum, remains often in the melt and leads to an increase in energy inputs. Therefore, monitoring the aluminum oxide content in cryolite is an important analytical task in aluminum production. In this paper, it is proposed to use the bands of the green system of aluminum monoxide AlO to estimate the alumina content in cryolites using laser-induced breakdown spectroscopy. For this purpose, a series of samples of NaF-Na3AlF6-Al2O3 system with a constant cryolite ratio (1.7) were used. It was found that focusing the radiation below the sample surface to a depth of 3–6 mm provides the minimum RSD values (4-8% for the 0-0 band and 6–10% for the 1–1 band) and the maximum signal-to-background ratio (80–120 for the 0-0 band and 40–75 for the 1–1 band) in the time window of 4–16 μs after the laser pulse. The selected focusing and time window conditions made it possible to detect a dependence between the intensity of the 0–0 and 1–1 bands of AlO and the alumina content, which is characterized by a high background and relatively low sensitivity. Normalization to the background makes it possible to use this dependence for qualitative separation of cryolite systems with high and low alumina content.

About the Authors

A. M. Popov
Lomonosov Moscow State University
Russian Federation

Moscow



B. S. Chilikin
Lomonosov Moscow State University
Russian Federation

Moscow



A. I. Kuznetsov
Lomonosov Moscow State University
Russian Federation

Moscow



E. V. Kungurtsev
Lomonosov Moscow State University
Russian Federation

Moscow



P. V. Protsenko
Lomonosov Moscow State University
Russian Federation

Moscow



References

1. A. T. Tabereaux, R. D. Peterson. Chapter 2.5 Aluminum Production, in Treatise on Process Metallurgy, Elsevier (2014) 839—917

2. H. Kvande. J. Miner. Met. Mat. Soc. (JOM), 46, N 11 (1994) 22—28

3. A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tinghaev, O. Tkacheva, A. Redkin, Y. Zaikov. Metallurg. Mater. Trans. B, 42 (2011) 236—242

4. M. Kucharík, M. Korenko, D. Janičkovič, M. Kadlečíková, M. Boča, J. V. Oboňa. Monatsh. Chem., 141 (2010) 7—13

5. E. Robert, J. E. Olsen, V. Danek, E. Tixhon, T. Østvold, B. Gilbert. J. Phys. Chem. B, 101, N 46 (1997) 9447—9457

6. O. E. Bezrukova, S. D. Kirik, S. G. Ruzhnikov, I. S. Yakimov, P. S. Dubinin. Spectrochim. Acta, B, 152 (2019) 52—58

7. V. Danek, Ø. T. Gustavsen, T. Ostvold. Can. Metall. Q, 39, N 2 (2000) 153—162.

8. V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, R. Noll. Anal. Chem., 86, N 19 (2014) 9687—9692

9. S. H. Gudmundsson, J. Matthiasson, B. M. Björnsson, H. Gudmundsson, K. Leosson. Spectrochim. Acta, B, 158 (2019) 105646

10. L. Sun, H. Yu, Z. Cong, H. Lu, B. Cao, P. Zeng, W. Dong, Y. Li. Spectrochim. Acta, B, 142 (2018) 29—36

11. H. Lu, X. Hu, L. Ma, M. Li, B. Cao. Spectrochim. Acta, B, 164 (2020) 105753

12. T. F. Akhmetzhanov, T. A. Labutin, D. M. Korshunov, A. A. Samsonov, A. M. Popov. J. Anal. At. Spectrom., 38 (2023) 2134—2143

13. D. M. Surmick, C. G. Parigger. Appl. Spectrosc., 68, N 9 (2014) 992—996

14. S. M. Zaytsev, A. M. Popov, N. B. Zorov, T. A. Labutin. J. Instrument, 9 (2014) P06010

15. A. Kramida, Yu. Ralchenko, J. Reader. NIST Atomic Spectra Database, ver. 5.12 (2024), https://physics.nist.gov/asd [2025, May 5]

16. http://libs.chem.msu.ru/

17. S. M. Zaytsev, A. M. Popov, T. A. Labutin. Spectrochim. Acta, B, 158 (2019) 105632

18. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov. Spectrochim. Acta, B, 65, N 8 (2010) 642—657

19. M. Saksena, M. Deo, K. Sunanda, S. H. Behere, C. T. Londhe. J. Mol. Spectrosc., 247, N 1 (2008) 47—56

20. S. Rosenwaks, R. E. Steele, H. P. Broida. J. Chem. Phys., 63, N 5 (1975) 1963—1965

21. C. Blondel, C. Delsart, F. Goldfarb. J. Phys. B, 34, N 9 (2001) L281

22. T. Andersen. Phys. Rep., 394 (2004) 157—313

23. Y. Zeiri, G. G. Balint-Kurti. J. Mol. Spectrosc., 99, N 1 (1983) 1—24

24. R. Ritchie, H. Lew. Can. J. Phys., 42, N 1 (1964) 43—52

25. I. Kopp, R. Barrow. J. Phys. B, 3, N 10 (1970) L118

26. Н. Б. Зоров, А. М. Попов, С. М. Зайцев, Т. А. Лабутин. Успехи химии, 84, № 10 (2015) 1021—1050 [N. B. Zorov, A. M. Popov, S. M. Zaytsev, T. A. Labutin. Russ. Chem. Rev., 84, N 10 (2015) 1021—1050]

27. В. П. Глушко, Л. В. Гурвич, Г. А. Бергман, И. В. Вейц, В. А. Медведев, Г. А. Хачкурузов, В. С. Юнгман. Термодинамические свойства индивидуальных веществ. Справочное изд-е., т. 3. кн. 2, Москва, Наука (1981)


Review

For citations:


Popov A.M., Chilikin B.S., Kuznetsov A.I., Kungurtsev E.V., Protsenko P.V. Bands of Aluminum Monoxide for Alumina Determination in Cryolites by Means of Laser-Induced Breakdown Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):732-739. (In Russ.)

Views: 23


ISSN 0514-7506 (Print)