Bands of Aluminum Monoxide for Alumina Determination in Cryolites by Means of Laser-Induced Breakdown Spectroscopy
Abstract
Alumina (Al2O3), added to melt of the cryolite (Na3AlF6) in an electrolysis bath to produce metallic aluminum, remains often in the melt and leads to an increase in energy inputs. Therefore, monitoring the aluminum oxide content in cryolite is an important analytical task in aluminum production. In this paper, it is proposed to use the bands of the green system of aluminum monoxide AlO to estimate the alumina content in cryolites using laser-induced breakdown spectroscopy. For this purpose, a series of samples of NaF-Na3AlF6-Al2O3 system with a constant cryolite ratio (1.7) were used. It was found that focusing the radiation below the sample surface to a depth of 3–6 mm provides the minimum RSD values (4-8% for the 0-0 band and 6–10% for the 1–1 band) and the maximum signal-to-background ratio (80–120 for the 0-0 band and 40–75 for the 1–1 band) in the time window of 4–16 μs after the laser pulse. The selected focusing and time window conditions made it possible to detect a dependence between the intensity of the 0–0 and 1–1 bands of AlO and the alumina content, which is characterized by a high background and relatively low sensitivity. Normalization to the background makes it possible to use this dependence for qualitative separation of cryolite systems with high and low alumina content.
About the Authors
A. M. PopovRussian Federation
Moscow
B. S. Chilikin
Russian Federation
Moscow
A. I. Kuznetsov
Russian Federation
Moscow
E. V. Kungurtsev
Russian Federation
Moscow
P. V. Protsenko
Russian Federation
Moscow
References
1. A. T. Tabereaux, R. D. Peterson. Chapter 2.5 Aluminum Production, in Treatise on Process Metallurgy, Elsevier (2014) 839—917
2. H. Kvande. J. Miner. Met. Mat. Soc. (JOM), 46, N 11 (1994) 22—28
3. A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tinghaev, O. Tkacheva, A. Redkin, Y. Zaikov. Metallurg. Mater. Trans. B, 42 (2011) 236—242
4. M. Kucharík, M. Korenko, D. Janičkovič, M. Kadlečíková, M. Boča, J. V. Oboňa. Monatsh. Chem., 141 (2010) 7—13
5. E. Robert, J. E. Olsen, V. Danek, E. Tixhon, T. Østvold, B. Gilbert. J. Phys. Chem. B, 101, N 46 (1997) 9447—9457
6. O. E. Bezrukova, S. D. Kirik, S. G. Ruzhnikov, I. S. Yakimov, P. S. Dubinin. Spectrochim. Acta, B, 152 (2019) 52—58
7. V. Danek, Ø. T. Gustavsen, T. Ostvold. Can. Metall. Q, 39, N 2 (2000) 153—162.
8. V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, R. Noll. Anal. Chem., 86, N 19 (2014) 9687—9692
9. S. H. Gudmundsson, J. Matthiasson, B. M. Björnsson, H. Gudmundsson, K. Leosson. Spectrochim. Acta, B, 158 (2019) 105646
10. L. Sun, H. Yu, Z. Cong, H. Lu, B. Cao, P. Zeng, W. Dong, Y. Li. Spectrochim. Acta, B, 142 (2018) 29—36
11. H. Lu, X. Hu, L. Ma, M. Li, B. Cao. Spectrochim. Acta, B, 164 (2020) 105753
12. T. F. Akhmetzhanov, T. A. Labutin, D. M. Korshunov, A. A. Samsonov, A. M. Popov. J. Anal. At. Spectrom., 38 (2023) 2134—2143
13. D. M. Surmick, C. G. Parigger. Appl. Spectrosc., 68, N 9 (2014) 992—996
14. S. M. Zaytsev, A. M. Popov, N. B. Zorov, T. A. Labutin. J. Instrument, 9 (2014) P06010
15. A. Kramida, Yu. Ralchenko, J. Reader. NIST Atomic Spectra Database, ver. 5.12 (2024), https://physics.nist.gov/asd [2025, May 5]
16. http://libs.chem.msu.ru/
17. S. M. Zaytsev, A. M. Popov, T. A. Labutin. Spectrochim. Acta, B, 158 (2019) 105632
18. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov. Spectrochim. Acta, B, 65, N 8 (2010) 642—657
19. M. Saksena, M. Deo, K. Sunanda, S. H. Behere, C. T. Londhe. J. Mol. Spectrosc., 247, N 1 (2008) 47—56
20. S. Rosenwaks, R. E. Steele, H. P. Broida. J. Chem. Phys., 63, N 5 (1975) 1963—1965
21. C. Blondel, C. Delsart, F. Goldfarb. J. Phys. B, 34, N 9 (2001) L281
22. T. Andersen. Phys. Rep., 394 (2004) 157—313
23. Y. Zeiri, G. G. Balint-Kurti. J. Mol. Spectrosc., 99, N 1 (1983) 1—24
24. R. Ritchie, H. Lew. Can. J. Phys., 42, N 1 (1964) 43—52
25. I. Kopp, R. Barrow. J. Phys. B, 3, N 10 (1970) L118
26. Н. Б. Зоров, А. М. Попов, С. М. Зайцев, Т. А. Лабутин. Успехи химии, 84, № 10 (2015) 1021—1050 [N. B. Zorov, A. M. Popov, S. M. Zaytsev, T. A. Labutin. Russ. Chem. Rev., 84, N 10 (2015) 1021—1050]
27. В. П. Глушко, Л. В. Гурвич, Г. А. Бергман, И. В. Вейц, В. А. Медведев, Г. А. Хачкурузов, В. С. Юнгман. Термодинамические свойства индивидуальных веществ. Справочное изд-е., т. 3. кн. 2, Москва, Наука (1981)
Review
For citations:
Popov A.M., Chilikin B.S., Kuznetsov A.I., Kungurtsev E.V., Protsenko P.V. Bands of Aluminum Monoxide for Alumina Determination in Cryolites by Means of Laser-Induced Breakdown Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):732-739. (In Russ.)





















