Moving of Fluorine Ions under Dynamic Elastic Deformation in LaF3 Crystals
Abstract
Using simulation, we studied the features of fluorine ion movement in a superionic lanthanum trifluoride crystal in the dielectric phase under dynamic elastic deformation caused by the propagation of an acoustic wave with a frequency of no more than 100 MHz. It was found that the concentration of fluorine ions in interstitial positions increases significantly in the tensile region and decreases slightly in the compression region. In the tensile and compressive zones, alternating at intervals equal to the half-length of the acoustic wave, the ionic conductivity can differ by an order of magnitude, forming localized regions of the superionic phase.
About the Authors
F. R. AkhmedzhanovUzbekistan
Tashkent
S. Z. Mirzaev
Uzbekistan
Tashkent
G. S. Nuzhdov
Uzbekistan
Tashkent
References
1. Н. И. Сорокин, Б. П. Соболев. ФТТ, 61, № 1 (2019) 53—58, https://doi.org/10.21883/FTT.2019.01.46893.181
2. В. Ф. Криворотов, С. З. Мирзаев, Г. С. Нуждов. ЖТФ, 87, № 3 (2017) 360—366, https://doi.org/10.21883/JTF.2017.03.44239.1686
3. А. К. Иванов-Шиц, И. В. Мурин. Ионика твердого тела, т. 2, Санкт-Петербург, изд-во СПб ун-та (2009) 218—228
4. Ю. Я. Гуревич, Ю. И. Харкац. Суперионные проводники, Москва, Наука (1992) 12—31
5. R. C. Agrawal, R. K. Gupta. J. Mater. Sci., 34 (1999) 1131—1162, https://doi.org/10.1023/A:1004598902146
6. Н. И. Сорокин. Кристаллография, 68, № 1 (2023) 58—61, https://doi.org/10.31857/S0023476123010253
7. М. П. Шаскольская. Кристаллография. Учебник для втузов. Москва, Высшая школа (1976)
8. В. Ф. Криворотов, Г. С. Нуждов. ЖТФ, 82, № 12 (2012) 58—62, http://journals.ioffe.ru/articles/10772
9. J. Wang, Y. Yan, H. Liu, G. Zhang, D. Yue, S. Tong, C. Gao and Y. Han. J. Phys. Chem. Chem. Phys., 22 (2020) 26306—26311, https://doi.org/10.1039/D0CP03579C
10. B. M. Voronin, S. V. Volkov. Russ. J. Electrochem., 4, N 1 (2004) 44—49, https://doi.org/10.1023/B:RUEL.0000012073.09658.4f
11. P. E. Ngoepe, W. M. Jordan, C. R. A. Catlov, J. D. Comins. Phys. Rev. B, 41, N 6 (1990) 3815—3823
12. J. D. Dutra, M. A. Filho, G. B. Rocha, R. O. Freire, A. M. Simas, J. J. P. Stewart. Chem. Theory Comp., 9, N 8 (2013) 3333—3341, https://doi.org/10.1021/ct301012h
13. Х. Гулд. Компьютерное моделирование в физике, ч. 1, Москва, Мир (1990) 147—149
14. Э. Д. Дьелесан, Д. Руайе. Упругие волны в твердых телах. Применение для обработки сигналов, Москва, Наука (1982) 332—343
15. Ю. И. Сиротин, М. П. Шаскольская. Основы кристаллофизики, Москва, Наука (1979) 323—332
16. F. R. Akhmedzhanov, S. Z. Mirzaev, U. A. Saidvaliev. Ferroelectrics, 556, N 1 (2020) 23—28, https://doi.org/10.1080/00150193.2020.1713335
17. Zh. Lv, C. Cheng, Ya. Cheng, X. Chen, G. Ji. Comp. Mater. Sci., 89 (2014) 57—64, https://doi.org/10.1016/j.commatsci.2014.03.011
Review
For citations:
Akhmedzhanov F.R., Mirzaev S.Z., Nuzhdov G.S. Moving of Fluorine Ions under Dynamic Elastic Deformation in LaF3 Crystals. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):747-752. (In Russ.)





















