Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structural, Photoluminescence, and Thermoluminescence Studies on Dy3+-Activated Ca3Al2O6 Phosphor

Abstract

Synthesis and characterization of Dy3+-activated Ca3Al2O6 phosphor are reported. The phosphor was synthesized by a modified solid-state reaction method with variable concentrations of doping ions (0.5–3.0 mol.%). The synthesized phosphors were characterized by X-ray diffraction (XRD) analysis, and it was revealed that the sample is monophased and crystallizes in a cubic structure. Scanning electron microscopy (SEM) results exhibited an irregular grain size distribution, ranging from 1 to 10 ìm. Fourier transform infrared (FTIR) studies confirmed the formation of Ca3Al2O6:Dy3+ phosphor. Photoluminescence (PL) excitation and emission spectra were monitored for variable doping concentrations. Ca3Al2O6:Dy3+ phosphor emits intense emission bands at 481 and 575 nm (excited at 350 nm) when doped with Dy3+ in the host. The corresponding transitions of the doping ion and concentration quenching effect were studied in detail. The 1931 CIE (x, y) chromaticity coordinates (x = 0.26 and y = 0.32) showed the distribution of the spectral region calculated from PL emission spectra. The thermoluminescence (TL) glow curve showed broad peak centres at around 248oC, and it was fitted using the computerized glow curve deconvolution (CGCD) technique. It was found that the deep trapping phenomenon occurs for UV-irradiated samples where the activation energy is high. Trap analysis elucidated the formation of luminescence centres in Dy3+-doped phosphors.

About the Authors

K. K. Rao
Department of Physics, Krishna University
India

Machilipatnam



M. C. Rao
Department of Physics, Krishna University; Department of Physics, Andhra Loyola College
India

Machilipatnam

Vijayawada



V. Dubey
Department of Physics, North-Eastern Hill University
India

Shillong, Meghalaya



References

1. N. Effendy, H. A. A. Sidek, H. M. Kamari, M. H. M. Zaid, J. Y. C. Liew, H. K. Lee, N. A. A. Rahman, S. A. A. Wahab, M. Z. A. Khiri, R. E. Mallawany, Optik, 184, 480–484 (2019).

2. K. Mondal, J. Manam, J. Lumin., 195, 259–270 (2018).

3. L. Cheng, X. Li, L. Sun, H. Zhong, Y. Tian, J. Wan, W. Lu, Y. Zheng, T. Yu, L. H. Yu, B. Chen, Phys. B, 405, 4457–4461 (2010).

4. M. J. Xin, Y. C. Tao, C. Q. Qing, J. Lumin., 130, 1320–1323 (2010).

5. V. R. Bandi, Y. T. Nien, I. G. Chen, J. Appl. Phys., 108, 023111–023114 (2010).

6. F. H. Attix, F. Tochilin, Radiation Dosimetry, Academic Press, New York (1969).

7. W. L. McLaughlin, A. W. Boyd, K. H. Chadwick, J. C. Miller, A. McDonald, Dosimetry for Radiation Processing, Taylor & Francis, London (1989).

8. R. Y. Yang, H. L. Lai, J. Lumin., 145, 49–54 (2014).

9. Q. Q. Zhu, L. X. Zhong, L. X. Yang, X. Xu, ECS J. Solid State Sci. Technol., 1, R119–R122 (2012).

10. J. S. An, J. H. Noh, I. S. Cho, H. S. Roh, J. Y. Kim, H. S. Han, K. S. Hong, J. Phys. Chem. C, 114, 10330–10335 (2010).

11. M. Ziyauddin, S. Tigga, N. Brahme, D. P. Bisen, Lumin., 31, 76–80 (2016).

12. Q. He, R. Fu, X. Song, H. Zhu, X. Su, C. You, J. Alloys Compd., 810, 151960 (2019).

13. B. G. Zhai, M. M. Chen, Y. M. Huang, RSC Adv., 12, 31757–31768 (2022).

14. S. Y. Liu, D. Gao, L. Wang, W. B. Song, Q. M. Yu, Y. B. Wen, X. L. Zang, Russ. Phys. J., 66, 655–665 (2023).

15. S. Wang, Y. Wu, Y. Fan, L. Wu, J. Yu, Mater. Res. Bull., 125, 110781 (2020).

16. H. Liang, Y. Tao, Q. Su, S. Wang, J. Solid State Chem., 167, 435–440 (2002).

17. Y. Huang, K. Jang, H. S. Lee, E. Cho, J. Jeong, S. S. Yi, J. H. Jeong, J. H. Park, Phys. Proc., 2, 207–210 (2009).

18. G. R. Dillip, S. J. Dhoble, B. Deva Prasad Raju, Opt. Mater., 35, 2261–2266 (2013).

19. K. A. Denault, J. Brgoch, M. W. Gaultois, A. Mikhailovsky, R. Petry, H. Winkler, S. P. Denbaars, R. Seshadri, Chem. Mater., 26, 2275–2282 (2014).

20. S. Sharma, N. Brahme, D. P. Bisen, P. Dewangan, Opt. Express, 26, 29495–29508 (2018).

21. D. Verma, P. R. Patel, L. M. Verma, Mater. Sci. Poland, 37, 55–64 (2019).

22. X. Zhang, F. Meng, W. Li, S. L. Kim, Y. M. Yu, H. J. Seo, J. Alloys Compd., 578, 72–76 (2013).

23. R. Reisfeld, C. K. Jørgensen, Lasers and Excited States of Rare Earths, Springer (1977).

24. J. Kaur, D. Chandrakar, V. Dubey, R. Shrivastava, Y. Parganiha, N. S. Suryanarayana, J. Display Technol., 12, 506–512 (2016).

25. E. Pavitra, G. Seeta Rama Raju, L. Krishna Bharat, J. Y. Park, C. H. Kwak, J. W. Chung, Y. K. Han, Y. S. Huh, J. Mater. Chem. C, 6, 12746–12757 (2018).

26. P. Huang, C. E. Cui, S. Wang, Opt. Mater., 32, 184–189 (2009).

27. V. Kortov, Radiat. Meas., 42, 576–581 (2007).

28. A. M. Sadek, G. Kitis, J. Lumin., 183, 533–541 (2017).

29. G. Kitis, J. M. Gomez-Ros, J. W. N. Tuyn, J. Phys. D: Appl. Phys., 31, 2636 (1998).


Review

For citations:


Rao K.K., Rao M.C., Dubey V. Structural, Photoluminescence, and Thermoluminescence Studies on Dy3+-Activated Ca3Al2O6 Phosphor. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):825.

Views: 15


ISSN 0514-7506 (Print)