Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Application of Two Smart Nonlinear Multivariate Calibration Methods for the Concurrent Quantitative Spectrophotometric Determination of Antiparkinson Drugs in Pharmaceutical Formulation and Biological Samples: Comparison with HPLC

Abstract

Chemometric-assisted UV-spectrophotometric methods, including least squares support vector machine (LS-SVM) and partial least squares (PLS) as multivariate approaches, were proposed for the quantitative simultaneous determination of levodopa (LEV) and benserazide (BS) in pharmaceutical formulation and urine samples. In the LS-SVM method, the related parameters, named the regularization parameter (γ) and width of the function (σ), were optimized, and the values with the minimum root mean square error (RMSE) were selected. The RMSE values were obtained at 0.9246 and 0.3423 for LEV and BS, respectively, whereas in the PLS model, the RMSE of the test set was found to be 0.3674 and 0.1216 for LEV and BS, respectively. The suggested models disclosed satisfactory recovery related to the synthetic mixtures in the range from 91.21 to 107.90% for LS-SVM and from 94.33 to 101.42% for PLS. The simultaneous determination of the LEV and BS in tablet dosage form and spiked urine samples using the proposed models revealed recovery higher than 94% and 91%, respectively. A comparison was made with the ANOVA test between the proposed methods and highperformance liquid chromatography (HPLC), and no significant difference was shown. These chemometrics methods are fast, facile, inexpensive, precise, and do not require sample pretreatment. Low solvent use, reduced energy consumption, and short time for analysis are other advantages of these methods. Therefore, they can be a safe and stable approach for drug analysis in quality control laboratories instead of expensive and time-consuming chromatographic techniques.

About the Authors

M. Fakhar
Department of Chemistry, NT. C., Islamic Azad University
Islamic Republic of Iran

Melika Fakhar

Tehran



M. R. Sohrabi
Department of Chemistry, NT. C., Islamic Azad University
Islamic Republic of Iran

Mahmoud Reza Sohrabi

Tehran



S. M. Melika
Department of Chemistry, NT. C., Islamic Azad University
Islamic Republic of Iran

Saeid Mortazavi Nik

Tehran



References

1. A. Zhang, Z. Song, A. Di, Z. Zhou, L. Zheng, L. Zhuang, Complementary Therapies Med., 80, 103020 (2024).

2. H. Takeshige-Amano, T. Hatano, K. Kamagata, C. Andica, T. Ogawa, A. Shindo, W. Uchida, W. Sako, S. Saiki, Y. Shimo, G. Oyama, A. Umemura, M. Ito, M. Hori, S. Aoki, N. Hattori, J. Neurological Sci., 457, 122883 (2024).

3. C. Wu, H. Wu, C. Zhou, X. Guan, T. Guo, J. Wu, J. Chen, J. Wen, J. Qin, S. Tan, X. Duanmu, W. Yuan, Q. Zheng, B. Zhang, X. Xu, M. Zhang, Neurobiol. Disease, 191, 106406 (2024).

4. L. F. Ferreira Marques, L. S. Bem Junior, M. L. Rocha, J. Fechine de Alencar Neto, O. da Cunha Ferreira Neto, N. B. Lemos, A. O. Lira, M. H. Rodrigues Silva, L. B. Alves Neto, J. Ramos de Andrade, H. R. Cirne de Azevedo Filho, Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 36, 101916 (2024).

5. R. D. Crapnell, C. E. Banks, Electroanalyt. Overview: ACS Measurement Sci., Au. 3, 84–97 (2023).

6. J. Tashkhourian, M. R. Hormozi-Nezhad, J. Khodaveisi, Spectrochim. Acta, Part A, 82, 25–30 (2011).

7. E. Kuyumcu Savan, G. Erdogdu, J. Solid State Electrochem., 21, 2209–2217 (2017).

8. E. Pacheco da Silva, M. da Silva Araujo, M. H. Kunita, R. Matos, R. Antigo Medeiros, Molecules, 27, 8614 (2022).

9. E. Dinc, S. Kaya, T. Doganay, D. Baleanu, J. Pharm. Biomed. Analysis, 44, 991–995 (2007).

10. R. de Oliveira Vilhenaa, F. Lada Degaut Pontesa, B. Maurício Marsona, R. Pereira Ribeiroa, K. Athayde Teixeira de Carvalhob, M. André Cardosoa, R. Pontarolo, J. Chromatography, B, 967, 41–49 (2014).

11. L. Molteni, B. Charlier, V. Izzo, A. Coglianese, V. Conti, R. Eleopra, R. Cilia, C. Capelli, A. D’Urso, U. de Grazia, Molecules, 28, 4264 (2023).

12. L. Pan, Y. Guo, Z. Li, J. Chen, T. Jiang, Y. Yu, Chromatographia, 72, 627–633 (2010).

13. M. Bhoir, N. Rao, Int. J. Pharm. Tech. Res., 13, 206–216 (2020).

14. M. Kumar Gupta, A. Ghuge, M. Parab, Y. Al-Refaei, A. Khandare, N. Dand, N. Waghmare, Curr. Issues Pharm. Med. Sci., 35, 224–228 (2022).

15. M. W. Dong, LCGC North Am., 31, 472–479 (2013).

16. Sh. Mofavvaza, M. R. Sohrabi, A. Heydari, Optik – Int. J. Light and Electron Optics, 220, 165246 (2020).

17. D. Gupta, S. Bhardwaj, S. Sethi, S. Pramanik, D. Kumar Das, R. Kumar, P. Pratap Singh, V. Kumar Vashistha, Spectrochim. Acta, Part A: Mol. and Biomolec. Spectroscopy, 270, 120819 (2022).

18. I. Bulduk, E. Akbel, J. Taibah University Sci., 15, 507–513 (2021).

19. A. H. Kamal, S. F. El-Malla, Sh. F. Hammad, Eur. J. Pharm. and Med. Res., 3, 348–360 (2016).

20. R. H. Obaydo, D. J. Al Zakri, A. Alhaj Sakur, H. M. Lotfy, Future J. Pharm. Sci., 7, 44 (2021).

21. G. Pekcan Ertokus, Int. J. Anal. Chem., 1–8 (2019).

22. M. A. Hegazy, H. M. Lotfy, Sh. Mowaka, E. Hany Mohamed, Spectrochim. Acta, Part A: Mol. and Biomolec. Spectroscopy, 164, 15–23 (2016).

23. Sh. Shokouhi, M. R. Sohrabi, Sh. Mofavvaz, Optik – Int. J. Light and Electron Optics, 206, 164304 (2020).

24. M. Valizadeh, E. Smiley, Z. Ameri Braki, P. Dastafkan, Optik – Int. J. Light and Electron Optics, 258, 168816 (2022).

25. F. Hasanpour, Ali A. Ensafi, T. Khayamian, Anal. Chim. Acta, 670, 44–50 (2010).

26. M. Taghizade, M. Ebrahimi, E. Fooladi, M. Yoosefian, Microchem. J., Part A, 160, 105627 (2021).

27. K. Keyvan, M.R. Sohrabi, F. Motiee, Chemometrics and Intelligent Laboratory Systems, 220, 104473 (2022).

28. E. Wollmer, S. Klein, J. Pharm. Pharm. Sci., 20, 258–269 (2017).

29. E. Dinç, A. Özdemir, D. Baleanu, Talanta, 65, 36–47 (2005).

30. A. Asfaram, M. Ghaedi, M. H. Ahmadi Azqhandi, A. Goudarzi, M. Dastkhoon, RSC Adv., 6, 40502 (2016).

31. H. J. Sun, Y. X. Wu, Z. F. Wu, F. Han, M. Yang, Y. Q. Wang, Phytochem. Lett., 43, 108–113 (2021).

32. Z. Tian, Eng. Appl. Artificial Intelligence, 94, 103801 (2020).

33. A. Youssef Ali Amer, PLoS One, 18, e0285131 (2023).

34. X. L. Xia, S. Ming Zhou, M. Ouyang, D. Xiang, Z. Zhang, Z. Zhou, IFAC – Papers Online, 56, 10377–10383 (2023).

35. Z. Li, Q. Wang, B. Zhu, B. Wang, W. Zhu, Y. Dai, Case Studies in Thermal Eng., 39, 102432 (2022).

36. P. Du, X. Ma, Z. Wang, Y. Mo, P. Peng, Sust. Oper. and Comp., 2, 30–35 (2021).

37. D. Berrar, Reference Module in Life Sciences Encyclopedia of Bioinformatics and Computational Biology, 1, 542–545 (2019).

38. T. T. Wong, Pattern Rec., 48, 2839–2846 (2015).

39. A. Taghani, N. Goudarzi, Gh. Bagherian, M. Arab Chamjangali, A. H. Amin, J. Sep. Sci., 41, 2245–2252 (2018).

40. Z. Elmi, K. Faez, M. Goodarzi, N. Goudarzi, Mol. Phys., 107, 1787–1798 (2009).

41. R. Rosipal, N. Kramer, Subspace, Latent Structure and Feature Selection, 34–51 (2005).

42. W. P. Xiong, T. Li, Q. X. Zeng, J. Q. Du, B. Nie, C. C. Chen, X. Zhou, Discrete Dynamics in Nature and Society, 1–10 (2020).

43. J. White, S. D. Power, Sensors, 23, 6077 (2023).


Review

For citations:


Fakhar M., Sohrabi M.R., Melika S.M. Application of Two Smart Nonlinear Multivariate Calibration Methods for the Concurrent Quantitative Spectrophotometric Determination of Antiparkinson Drugs in Pharmaceutical Formulation and Biological Samples: Comparison with HPLC. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):828.

Views: 10


ISSN 0514-7506 (Print)