Green Synthesis and Evaluation of Lithium Oxide Nanoparticles for Antimicrobial and Photocatalytic Applications
Abstract
The growing emphasis on green technology has increased interest in cost-effective and environmentally sustainable methods for nanoparticle synthesis. In this study, lithium oxide nanoparticles (LiO NPs) were synthesized via a green route using Trigonella foenum-graecum leaf extract as both a reducing and capping agent. The synthesized nanoparticles were characterized using UV–visible spectroscopy (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The UV–Vis spectra revealed strong absorption corresponding to the characteristic band of LiO NPs, with a red shift observed as the weight fraction increased. XRD confirmed the formation of LiO NPs with a monoclinic structure and an average crystallite size of 29.5 nm. SEM analysis showed nearly spherical, aggregated nanoparticles. The photocatalytic activity of LiO NPs was evaluated through the degradation of methyl orange under UV–Vis irradiation. In addition, the antibacterial activity of LiO NPs was tested against gram-positive bacteria (Staphylococcus aureus, Salmonella abony, and Bacillus subtilis), gram-negative bacteria (Escherichia coli), and the fungal pathogen Candida albicans. At a 50% weight fraction, the nanoparticles exhibited the highest antibacterial activity, with inhibition zones of 16.0, 11.0, 8.0 ± 0.10, 11.0 ± 0.32, and 10.0 ± 0.0 mm against E. coli, S. aureus, S. abony, C. albicans, and B. subtilis, respectively. Overall, this study demonstrates that T. foenum-graecum leaf extract can be effectively utilized as a capping, stabilizing, and reducing agent for the green synthesis of LiO NPs with significant antimicrobial potential. This eco-friendly and low-cost method enhances the antibacterial efficiency of LiO NPs and highlights their potential applications in biomedical fields.
About the Authors
A. Mohammed IbrahimIndia
Chennai, Tamilnadu
K. Mohammed Musthaque
India
Chennai, Tamilnadu
S. Nandhagopal
India
Chennai, Tamilnadu
References
1. L. Zhu, W. Zeng, J. Xu, Chem. Rev., 121, No. 15, 12137–12260 (2021), doi: 10.1021/acs.chemrev.1c00125.
2. V. Kumar, P. Dhiman, H. Kaur, Renewable and Sustainable Energy Rev., 173, 113096 (2023), doi: 10.1016/j.rser.2023.113096.
3. R. Ramesh, P. Raghuvanshi, V. Gupta, Mater. Sci. Semicond. Proc., 148, 106700 (2022), doi: 10.1016/j.mssp.2022.106700.
4. A. Kumar, V. Kumar, D. Singh, R. K. Sharma, M. Bansal, Mater. Sci. Semicond. Proc., 157, 107058 (2023), doi: 10.1016/j.mssp.2023.107058.
5. S. Gupta, V. Polshettiwar, J. Mater. Chem. C, 9, No. 30, 9343–9370 (2021), doi: 10.1039/D1TC02069F.
6. L. Ge, H. Deng, T. Zhou, J. Nanomaterials, 2023, 6678123 (2023), doi: 10.1155/2023/6678123.
7. B. Ahmed, A. Hashmi, A. Khan, S. Haq, J. Nanostruct. Chem., 13, 227–244 (2023), doi: 10.1007/s40097-022-00512-3.
8. P. Vishnu, B. Neppolian, S. Muthuramkumar, Mater. Sci. Semicond. Proc., 155, 107088 (2023), doi: 10.1016/j.mssp.2023.107088.
9. M. Jayachandran, M. Sundararajan, P. V. Krishna, J. Environ. Chem. Eng., 10, No. 4, 108987 (2022), doi: 10.1016/j.jece.2022.108987.
10. Y. Zhou, W. Yang, Z. Zhang, Chem. Eur. J., 29, No. 6, e202201876 (2023), doi: 10.1002/chem.202201876.
11. R. Kumar, V. Kumar, J. Nanomaterials, 1267829 (2022), doi: 10.1155/2022/1267829.
12. M. D. Hernandez-Alonso, A. Fujishima, J. Nanoparticle Res., 25, 97 (2023), doi: 10.1007/s11051-023-05954-5.
13. J. Iqbal, A. Shah, M. Naeem, Ceram. Int., 47, No. 5, 6376-6390 (2021), doi: 10.1016/j.ceramint.2020.11.132.
14. Q. D. Truong, L. T. Tai, T. D. Nguyen, Adv. Mater. Lett., 13, 21046761 (2022), doi: 10.5185/aml.2022.46761.
15. N. S. Rajput, M. Sahni, P. Singh, B. Mandal, Nanomedicine: Nanotechnology, Biology, and Medicine, 46, 102547 (2023), doi: 10.1016/j.nano.2023.102547.
16. K. Karthikeyan, A. Tamilselvan, V. Aravindan, Electrochim. Acta, 354, 136679 (2020), doi: 10.1016/j.electacta.2020.136679.
17. B. J. Alwan, A. N. Abd, N. H. Zaki, AIP Conf. Proc., 2834, No. 1, AIP Publ. (2023).
18. K. Bhattacharya, S. Mukherjee, K. M. Hoque, J. Nanobiotechnology, 20, 343 (2022), doi: 10.1186/s12951-022-01527-4.
19. L. Wang, J. Cheng, L. Zhang, Environ. Sci. Poll. Res., 28, No. 30, 41132–41144 (2021), doi: 10.1007/s11356-021-14427-8.
20. N. Jahan, S. Khalid, S. Anwar, N. S. Shah, Environ. Res., 224, 115452 (2023), doi: 10.1016/j.envres.2023.115452.
21. N. Krithiga, A. Rajalakshmi, A. Jayachitra, J. Nanostruct. Chem., 10, 9–28 (2020), doi: 10.1007/s40097-019-00333-7.
22. R. Sadeghzadeh, M. Moradpour, Nanomedicine: Nanotechnology, Biology, and Medicine, 52, 102564 (2023), doi: 10.1016/j.nano.2023.102564.
23. M. Shabir, M. I. Khan, Environ. Nanotechnology, Monitoring & Management, 20, 100871 (2023), doi: 10.1016/j.enmm.2023.100871.
24. A. K. Yadav, S. Sehgal, J. Food Sci. and Technology, 52, No. 4, 2061–2067 (2015), doi: 10.1007/s11483-014-0658-5.
25. A. Mishra, M. Puri, Int. J. Food Science and Nutrition, 65, No. 1, 10–14 (2014), doi: 10.3109/09637486.2013.861205.
26. K. Srinivasan, et al. J. Mol. Liquids, 285, 198–206 (2019), doi: 10.1016/j.molliq.2019.04.097.
27. A. Mishra, et al. Mater. Today: Proc., 27, 1946–1950 (2020), doi: 10.1016/j.matpr.2020.03.188.
28. M. Nagarajan, et al., Int. J. Biol. Macromolecules, 82, 151–159(2016), doi: 10.1016/j.ijbiomac.2015.11.040.
29. V. Kumar, et al., J. Nanostruct. Chem., 11, No. 3, 383–391, (2021), doi: 10.1007/s40097-021-00479-y.
30. P. Velusamy, G. V. Kumar, V. Jeyanthi, et al., Toxic. Res., 32, 95–102 (2016). https://doi.org/10.5487/TR.2016.32.2.095
31. B. J. Alwin, et al., Materials Today: Proc., 44, 1703–1708 (2021), doi: 10.1016/j.matpr.2020.12.425.
32. S. Ranjan, et al., J. Mater. Sci.: Materials in Electronics, 30, No. 12, 11229–11236 (2019), doi: 10.1007/s10854-019-02562-7.
33. Ashish Kumar, Manohar Singh, Anil Kumar Sahu, J. Photochem. Photobiol. A: Chem., 392, 112431 (2020), doi: 10.1016/j.jphotochem.2020.112431.
34. Ghulam Murtaza, Sunil Kumar, Asim Ullah, Syed Waseem, Mater. Res. Bull., 111, 241–249 (2019), doi: 10.1016/j.materresbull.2018.12.015.
35. Ying Guo, Zheng Zhenhua, Zhang Wei, Zhang Jinxin, Appl. Catalysis B: Environ., 284, 119700 (2021), doi: 10.1016/j.apcatb.2020.119700.
36. Sujit Ranjan, Kumar Ramesh, Singh Anjali, J. Environ. Chem. Eng., 9, No. 4, 106136 (2021), doi: 10.1016/j.jece.2021.106136.
37. S. Ashrafi-Saiedlou, M. Rasouli-Sadaghiani, M. Fattahi, et al., Sci Rep., 15, 1018 (2025). https://doi.org/10.1038/s41598-024-84974-0
38. Khezerlou Arezou, Alizadeh-Sani Mahmood, Azizi-Lalabadi Maryam, Ehsani Ali, Microbiol. Pathogenesis, 123, 505–526 (2018), https://doi.org/10.1016/j.micpath.2018.08.008.
39. Q. L. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, J. Biomed. Mater. Res., 52, 662–668 (2000), https://doi.org/10.1002/1097-4636(20001215)52:4.
Review
For citations:
Mohammed Ibrahim A., Mohammed Musthaque K., Nandhagopal S. Green Synthesis and Evaluation of Lithium Oxide Nanoparticles for Antimicrobial and Photocatalytic Applications. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):833.





















