Transformation of Phenol in Solid Mixtures with Humic Acids under Electron Beam Irradiation
Abstract
The pulsed cathodoluminescence spectra of solid phenol, humic acids isolated from oxidized brown coal (Mongolia, China), including those subjected to mechanical activation, and mixtures of phenol with humic acids with a phenol content of 10, 30, 50, 70, and 90 wt.% were recorded. The spectra were recorded in the range from 350 to 850 nm upon irradiation with an electron beam of 2 ns duration with an average energy of 170 keV. The number of irradiation pulses, following at the frequency of 1 Hz, varied from 20 to 4000, while the absorbed dose from one pulse was about 1.4 kGy. It was shown that humic acids do not luminesce, but phenol emission appears in mixtures. The degree of phenol transformation in the mixtures under the action of an electron beam was determined by analyzing the pulsed cathodoluminescence spectra. The intense band at 375 nm is due to the transition from the triplet state T1 of phenol to the ground state S0. Two bands at 395 and 475 nm are formed by the transition from T1 state to the first and fourth vibrational levels of the ground state S0, and the long-wavelength band at 740 nm corresponds to Ti®T1 transition. With an increase in the number of irradiation pulses, the behavior of the intensities of all four phenol luminescence bands becomes extreme, indicating its transformation. The interaction of humic acids with phenol occurs through physical adsorption. The presence of humic acids in most samples inhibits the transformation of phenol molecules. The relative positions of the functional carboxyl group and the phenol molecule in the mixtures have an effect.
About the Authors
A. V. SpirinaRussian Federation
Ekaterinburg
О. N. Tchaikovskaya
Russian Federation
Ekaterinburg; Tomsk
Е. N. Bocharnikova
Russian Federation
Ekaterinburg; Tomsk
V. I. Solomonov
Russian Federation
Ekaterinburg
N. V. Yudina
Russian Federation
Tomsk
References
1. S. Salvestrini, P. Vanore, A. Bogush, S. Mayadevi, L. C. Campos. J. Water Reuse Desalin, 7 (2017) 280—287
2. Z. N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan. J. Environ. Manag., 241 (2019) 59—75
3. S. O. Ganiyu, E. D. Van Hullebusch, M. Cretin, G. Esposito, M. A. Oturan. Sep. Purif. Technol., 156, (2015) 891—914
4. H. Särkkä, A. Bhatnagar, M. Sillanpää. J. Electroanal. Chem., 754 (2015) 46—56
5. M. Kästner, K. M. Nowak, A. Miltner, S. Trapp, A. Schäffer. A Synthesis, Critical Rev. Environ. Sci. and Technol., 44, N 19 (2014) 2107—2171
6. S. Canonica, U. Jans, K. Stemmler, J. Hoigné. Environ. Sci. Technol., 29 (1995) 1822—1831
7. K. S. Golanoski, S. Fang, R. Del Vecchio, N. V. Blough. Environ. Sci. Technol., 46 (2012) 3912—3920
8. A. A. Gami, M. Y. Shukor, K. A. Khalil, F. A. Dahalan, A. Khalid, S. A. Ahmad. J. Environ. Microbiology and Toxicology, 2, N 1 (2014) 11—23
9. S. Chianese, A. Fenti, P. Iovino, D. Musmarra, S. Salvestrini. Molecules, 25 (2020) 918
10. V. Leone, D. Musmarra, P. Iovino, S. Capasso. Water Air Soil Poll., 228 (2017) 136
11. Д. А. Хунджуа, В. И. Южаков, Б. Н. Корватовский, В. З. Пащенко, Л. С. Кулябко, К. А. Кыдралиева, С. В. Пацаева. ВМУ. Серия 3. Физика. Астрономия, 6 (2018) 55—60
12. Материалы Третьей международной научно-практической конференции. Секция 3. Физика и химия торфа, продукты переработки, 27 сентября—3 октября 2015, Томск, Россия (2015)
13. О. Н. Чайковская, Е. Н. Бочарникова, В. И. Соломонов, А. С. Макарова, А. В. Спирина, С. А. Чайковский, И. В. Соколова. Изв. вузов. Физика, 68, № 5 (2025) 74—83
14. A. G. Proidakov. Solid Fuel Chem., 43, N 1 (2009) 9—14
15. A. V. Savel’eva, N. V. Yudina. Allerton Press, 48, N 5 (2014) 328—331
16. N. V. Yudina, A. V. Savel’eva, E.V. Linkevich. Solid Fuel Chem., 53, N 1 (2019) 29—35
17. L. Ge, C. Yang, J. Wang. IOP Conf. Series: Earth and Environ. Sci., 692 (2021) 042031
18. V. I. Solomonov, S. G. Michailov, A. I. Lipchak, V. V. Osipov, V. G. Shpak, S. A. Shunailov, I. Yalandin, M. R. Ulmaskulov. Laser Phys., 16, N 1 (2006) 126—129
19. T. S. Skripkina, A. L. Bychkov, V. D. Tikhova, O. I. Lomovsky. Solid Fuel Chem., 52, N 6 (2018) 356—360
20. T. S. Skripkina, A. L. Bychkov, V. D. Tikhova, B. S. Smolyakov, O. I. Lomovsky. Environ. Technology & Innovation, 11 (2018) 74—82
21. S. K. Lower, M. A. El-Sayed. Chem. Rev., 66 (1966) 199—241
22. M. Zagradnik, R. Polak. Fundamentals of Quantum Chemistry, Praha (1976)
23. Z. Rappoport. The Chemistry of Phenols, John Wiley and Sons (2003)
24. Т. В. Соколова, О. Н. Чайковская, И. В. Соколова, Е. А. Соснин. Журн. прикл. спектр., 73, № 5 (2006) 566—572 [T. V. Sokolova, O. N. Chaikovskaya, I. V. Sokolova, É. A Sosnin. J. Appl. Spectr.,73 (2006) 632—639]
25. M. Krauss, J. O. Jensen, H. F. Hameka. J. Phys. Chem., 98 (1994) 9955—9959
26. J. W. Riley, B. Wang, J. L. Woodhouse, M. Assmann, G. A. Worth, H. H. Fielding. J. Phys. Chem. Lett., 9 (2018) 678—682
27. Н. В. Юдина, А. В. Савельева, А. А. Иванов, Е. И. Короткова, О. И. Ломовский. Журн. прикл. химии, 77 (2004) 48—53 [N. V. Yudina, A. V. Savel’eva, A. A. Ivanov, Е. I. Korotkova, О. I. Lomovsky. Russ. J. Appl. Chem., 77, N 1 (2004) 46—51]
28. О. Н. Чайковская, И. В. Соколова, Т. В. Соколова, Н. В. Юдина, Е. В. Мальцева, А. А. Иванов. Журн. прикл. спектр., 75, № 4 (2008) 577—582 [O. N. Chaikovskaya, I. V. Sokolova, T. V. Sokolova, V. Yudina, E. V. Mal’tseva, A. A. Ivanov. J. Appl. Spectr., 75 (2008) 597—602]
Review
For citations:
Spirina A.V., Tchaikovskaya О.N., Bocharnikova Е.N., Solomonov V.I., Yudina N.V. Transformation of Phenol in Solid Mixtures with Humic Acids under Electron Beam Irradiation. Zhurnal Prikladnoii Spektroskopii. 2026;93(1):114-121. (In Russ.)
JATS XML





















