New Approach to Tuning the Scintillation Properties of PbWO4 Crystals to Expand the Energy Range of the Detecting -Rays
Abstract
It is demonstrated that the introduction of strontium ions into the lead tungstate compound PbWO4 (PWO), which isomorphically substitute lead ions in the crystal lattice, allows one to vary the scintillation yield, its temperature dependence, and the parameters of the luminescence kinetics over a wide range. With 10% substitution of lead ions in the crystal lattice, the (Pb,Sr)WO4 compound is characterized by a scintillation yield of 1000 ph/MeV and a kinetics decay constant of 40 ns, while the temperature dependence of the scintillation yield is close to that of the PWO material. On the contrary, in the compound with 80% Sr instead of Pb, the yield reaches 10,000 ph/MeV with a decay constant of 600 ns. For the compound, the scintillation yield in the temperature range of 300—400 K is characterized by a temperature coefficient of –0.6 %/°C. The first compound is of interest for experiments in high-energy physics, including spectroscopy, starting from 10 MeV without detector cooling. The second is prospective for spectrometry in geological exploration and well logging, where operation at relatively high temperatures is required.
About the Authors
M. V. KorzhikBelarus
Minsk, Belarus; Moscow, Russia
A. E. Amelina
Russian Federation
Moscow
M. A. Artemyeva
Russian Federation
Novosibirsk
L. A. Balyan
Russian Federation
Novosibirsk
A. G. Bondarau
Belarus
Minsk
A. N. Vasil’ev
Russian Federation
Moscow
V. D. Grigorieva
Russian Federation
Novosibirsk
A. P. Eliseyev
Russian Federation
Novosibirsk
A. B. Kuznetsov
Russian Federation
Novosibirsk
I. Yu. Komendo
Russian Federation
Moscow
V. A. Mechinsky
Belarus
Minsk, Belarus; Moscow, Russia
A. L. Mikhlin
Russian Federation
Moscow
A. G. Postupaeva
Russian Federation
Novosibirsk
V. N. Shlegel
Russian Federation
Novosibirsk
References
1. P. Lecoq, A. Gektin, M. Korzhik. Inorganic Scintillators for Detector Systems, Springer International Publishing, Cham. (2017), doi: 10.1007/978-3-319-45522-8
2. L. Evans, P. Bryant. J. Inst., 3 (2008) S08001, doi: 10.1088/1748-0221/3/08/S08001
3. T. A. Collaboration, K. Aamodt. J. Inst., 3, N 8 (2008) S08002, doi: 10.1088/1748-0221/3/08/S08002
4. T. C. Collaboration, S. Chatrchyan. J. Inst., 3, N 8 (2008) S08004, doi: 10.1088/1748-0221/3/08/S08004 [
5. T. C. Collaboration, S. Chatrchyan. Phys. Lett. B, 716, N 1 (2012) 30—61, doi: 10.1016/j.physletb.2012.08.021
6. C. M. S. Collaboration, S. Chatrchyan. J. High Energ. Phys., 81, N 6 (2013) 1—127, doi: 10.1007/JHEP06(2013)081
7. S. A. Çetin, A. Collaboration. Phys. Lett. B, 716, N 1 (2012) 1—29, doi: 10.1016/j.physletb.2012.08.020
8. S. Burachas, M. Ippolitov, V. Manko, S. Nikulin, A. Vasiliev, A. Apanasenko, A. Vasiliev, A. Uzunian, G. Tamulaitis. Rad. Measur., 45, N 1 (2010) 83—88, doi: 10.1016/j.radmeas.2009.11.038
9. A. Borisevich, A. Fedorov, A. Hofstaetter, M. Korzhik, B. K. Meyer, O. Missevitch, R. Novotny. Nucl. Instr. Meth. Phys. Res. A, 537, N 1-2 (2005) 101—104, doi: 10.1016/j.nima.2004.07.244
10. R. W. Novotny, W. Doring, V. Dormenev, P. Drexler, W. Erni, M. Rost, M. Steinacher, M. Thiel, A. Thomas. IEEE Trans. Nucl. Sci., 55, N 3 (2008) 1295—1298, doi: 10.1109/TNS.2008.922807
11. M. Follin, V. Sharyy, J.-P. Bard, M. Korzhik, D. Yvon. J. Inst., 16, N 8 (2021) P08040, doi: 10.1088/1748-0221/16/08/P08040
12. Crytur.spol.sa., Products, https://www.crytur.com/products/ (accessed 10 August 2025)
13. M. Korzhik, K.-T. Brinkmann, V. Dormenev, M. Follin, J. Houzvicka, D. Kazlou, J. Kopal, V. Mechinsky, S. Nargelas, P. Orsich, Z. Podlipskas, V. Sharyy, S. Sykorova, Y. Talochka, G. Tamulatis, D. Yvon, H.-G. Zaunick. Nucl. Instr. Meth. Phys. Res. A, 1034 (2022) 166781, doi: 10.1016/j.nima.2022.166781
14. A. Hallaoui, A. Taoufyq, M. Arab, B. Bakiz, A. Benlhachemi, L. Bazzi, S. Villain, J.-C. Valmalette, F. Guinneton, J.-R. Gavarri. J. Solid State Chem., 227 (2015) 186—195, doi: 10.1016/j.jssc.2015.04.004
15. M. Korzhik, A. Amelina, A. Fedorov, A. Bondarau, P. Karpyuk, I. Komendo, Y. Borovlev, V. Mechinsky, A. Postupaeva, V. Shlegel, I. Shpinkov, A. Vasil’ev. Next Materials, 7 (2025) 100386, doi: 10.1016/j.nxmate.2024.100386
16. M. Korzhik, V. Retivov, V. Dubov, V. Ivanov, I. Komendo, D. Lelekova, P. Karpyuk, V. Mechinsky, A. Postupaeva, V. Smyslova, V. Shlegel, I. Shpinkov, A. Vasil’ev. J. Appl. Phys., 137, N 2 (2025) 020701, doi: 10.1063/5.0238695
17. Н. А. Лаишевцева, Е. В. Ткаченко, В. Д. Журавлев. Журн. неорг. химии, 28, № 12 (1983)
18. М. В. Коржик. Физика сцинтилляторов на основе кислородных кристаллов, Минск, БГУ (2003)
19. M. V. Korzhik, V. B. Pavlenko, T. N. Timoschenko, V. A. Katchanov, A. V. Singovskii, A. N. Annenkov, V. A. Ligun, I. M. Solskii, J.-P. Peigneux. Phys. Status Solidi (a), 154, N 2 (1996) 779—788, doi: 10.1002/pssa.2211540231
20. M. Böhm, A. E. Borsevich, G. Yu. Drobychev, G. Yu. Drobychev, A. Hofstaetter, O. V. Kondratiev, M. V. Korzhik, M. Luh, B. K. Meyer, J. P. Peigneux, A. Scharmann. Phys. Status Solidi (a), 167, N 1 (1998) 243—252, doi: 10.1002/(SICI)1521-396X(199805)167:1<243:AID-PSSA243>3.0.CO;2-#
Review
For citations:
Korzhik M.V., Amelina A.E., Artemyeva M.A., Balyan L.A., Bondarau A.G., Vasil’ev A.N., Grigorieva V.D., Eliseyev A.P., Kuznetsov A.B., Komendo I.Yu., Mechinsky V.A., Mikhlin A.L., Postupaeva A.G., Shlegel V.N. New Approach to Tuning the Scintillation Properties of PbWO4 Crystals to Expand the Energy Range of the Detecting -Rays. Zhurnal Prikladnoii Spektroskopii. 2026;93(1):133-138. (In Russ.)
JATS XML





















