Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study on the Experimental Accuracy of Raman Spectral Parameters

Abstract

Raman spectroscopy is considered an essential spectroscopic technique due to its simplicity, non-destructive nature, and ability to provide molecular fingerprinting. These qualities make it applicable across numerous research fields. Accurate Raman data analysis can uncover remarkable sub-microscopic phenomena such as local structural changes, electron-phonon and spin-phonon coupling, and ionic displacements. Therefore, understanding the precision involved in collecting and analyzing Raman data has become critically important. Omitting proper calibration and validation methods can lead to significant errors. In this article, we present a study on how improper validation methods of a spectrometer and inaccurate data fitting can cause substantial inaccuracies in spectral parameters. We demonstrate that the accuracy of Raman spectral parameters heavily relies on the spectrometer’s validation process, the choice of fitting function, and the consideration of errors caused by instrument randomness and resolution. Additionally, our study offers a method for assessing the uncertainty of Raman spectral parameters for a given spectrometer system. This is crucial for optimization, especially when dealing with subtle changes in spectral parameters to reduce inaccuracies.

About the Authors

Binoy Krishna De
UGC-DAE Consortium for Scientific Research
India

University Campus, Indore



Pragati Sharma
UGC-DAE Consortium for Scientific Research
India

University Campus, Indore



Divya Jangra
UGC-DAE Consortium for Scientific Research
India

University Campus, Indore



Praveen Kumar Velpula
UGC-DAE Consortium for Scientific Research
India

University Campus, Indore

 



Vasant G. Sathe
UGC-DAE Consortium for Scientific Research
India

University Campus, Indore



References

1. R. Petry, M. Schmitt, J. Popp, Chem. Phys. Chem., 4, 14–30 (2016).

2. D. W. Shipp, F. Sinjab, I. Notingher, Adv. Opt. Photonics, 9, 315 (2017).

3. K. Kong, C. Kendall, N. Stone, I. Notingher, Adv. Drug Deliv. Rev., 89, 121–134 (2015).

4. Q. Tu, C. Chang, Nanomed. Nanotechnol. Biol. Med., 8, 545–558 (2012).

5. A. Kudelski, Talanta, 76, 1–8 (2008).

6. I. Otel, Quantum Beam Sci., 7, 5–32(2023).

7. Z. Xu, Z. He, Y. Song, X. Fu, M. Rommel, X. Luo, A. Hartmaier, J. Zhang, F. Fang, Micromachines, 9, 361–383 (2018).

8. R. S. Das, Y. K. Agrawal, Vib. Spectrosc., 57, 163–176 (2011).

9. G. D. Smith, R. J. H. Clark, J. Archaeol. Sci., 31, 1137–1160 (2004).

10. D. Bersani, P. P. Lottici, J. Raman Spectrosc., 47, 499–530 (2016).

11. R. S. Golightly, W. E. Doering, M. J. Natan, ACS Nano, 3, 2859–2869 (2009).

12. G. Mogilevsky, L. Borland, M. Brickhouse, A. W. Fountain III, Int. J. Spectrosc., 2012, 1–12 (2012).

13. M. Petersen, Z. Yu, X. Lu, Biosensors, 11, 1–22 (2021).

14. T. Yaseen, D. W. Sun, J. H. Cheng, Trends Food Sci. Technol., 62, 177–189 (2017).

15. A. Orlando, F. Franceschini, C. Muscas, S. Pidkova, M. Bartoli, M. Rovere, A. Tagliaferro, Chemosensors, 9, 1–28 (2021).

16. V. G. Trotsenko, A. Lahmar, N. V. Lyanguzov, M. El Marssi, V. I. Torgashev, Superlattices Microstruct., 127, 100–108 (2019).

17. M. D. Fontana, P. Bourson, Appl. Phys. Rev., 2, 040602 (2015).

18. B. K. De, V. Dwij, R. Misawa, T. Kimura, V. G. Sathe, J. Phys. Cond. Matter., 33, 12LT01 (2021).

19. B. K. De, V. Dwij, H. S. Kunwar, S. Rana, V. G. Sathe, J. Phys. D. Appl. Phys., 55, 035304 (2022).

20. R. t. Vulchi, V. Morgunov, R. Junjuri, T. Bocklitz, Molecules, 29, 4748 (2024).

21. J. Sjöberg, N. Siminea, A. Păun, A. Lita, M. Larion, I. Petre, Adv. Opt. Mater., 2500736 (2025).

22. Y. Hagiwara, T. Kuwatani, Phys. Rev. Res., 7, 023163 (2025).

23. A. Ntziouni, J. Thomson, I. Xiarchos, X. Li, M. A. Bañares, C. Charitidis, R. Portela, E. Lozano Diz, Appl. Spectrosc., 76, 747–772 (2022).

24. A. Raj, C. Kato, H. A. Witek, H.-O. Hamaguchi, J. Raman Spectrosc., 52, 2038–2050 (2021).

25. 25. C. Liu, R. W. Berg, Appl. Spectrosc., 66, 1034–1043 (2012).

26. D. Tuschel, Spectrosc. (Santa Monica), 35, 9–15 (2020).

27. R. L. McCreery, Raman Spectroscopy for Chemical Analysis, 12, John Wiley and Sons, New York (2001).

28. D. Hutsebaut, P. Vandenabeele, L. Moens, Analyst, 130, 1204–1214 (2005).

29. E. Hecht, Optics, 4th ed., Addison Wesley (2001).

30. D. Tuschel, Spectroscopy, 36, 10–14 (2021).


Review

For citations:


De B.K., Sharma P., Jangra D., Velpula P.K., Sathe V.G. Study on the Experimental Accuracy of Raman Spectral Parameters. Zhurnal Prikladnoii Spektroskopii. 2026;93(1):140/1-140/9.

Views: 8

JATS XML

ISSN 0514-7506 (Print)