Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Preparation of Nitrogen-Doped Carbon Quantum Dots and Analysis and Detection of Vitamin B2

Abstract

This paper focuses on the preparation of nitrogen-doped carbon quantum dots (N-CQDs) from citric acid and urea, and their application in the detection of Vitamin B2. Citric acid was used as the carbon source and urea as the nitrogen source. N-CQDs were prepared by heating, after which they displayed excellent fluorescence performance and stability. The structure of the sample was then characterized using UV-visible spectrophotometry, fluorospectrophotometry, and Fourier Transform Infrared spectroscopy. Optimal pH, ultrasonic reaction time, and Vitamin B2 concentration for the N-CQDs were studied and optimized. Under optimal conditions (50 µL of N-CQDs, 2 mL of buffer solution with pH 4.0, and a reaction time of 30 min), the analysis and detection using fluorospectrophotometry demonstrated that Vitamin B2 caused significant fluorescence quenching of the prepared N-CQDs. With the standard recovery rate above 80%, these N-CQDs can serve as fluorescence probes for the analysis and detection of Vitamin B2 in actual food.

About the Authors

Hui Yang
Jiangsu Provincial Xuzhou Pharmaceutical Vocational College
China

Department of Pharmacy

Xuzhou, Jiangsu



Xiucheng Yang
The Second Affiliated Hospital Zhejiang University School of Medicine
China

Hangzhou, Zhejiang



References

1. Y. Liu, C. Liu, C. Shi, et al., J. Alloys and Compd., 881, 160437 (2021).

2. M. O. Caglayan, F. Mindivan, S. Şahin, Crit. Rev. Anal. Chem., 52, No. 4, 814–847 (2022).

3. S. Aderyani, P. Flouda, S. A. Shah, et al., Electrochim. Acta, 390, 138822 (2021).

4. 4. L. Ai, Y. Yang, B. Wang, et al., Sci. Bull., 66, No. 8, 839–856 (2021).

5. Y. Liu, X. Li, Q. Zhang, et al., Angew. Chemie, 59, No. 4, 1718–1726 (2020).

6. H Rao, W Liu, K He, et al., ACS Sust. Chem. and Eng., 8, No. 23, 8857–8867 (2020).

7. P. Krishnaiah, R. Atchudan, S. Perumal, et al., Chemosphere, 286, 131764 (2022).

8. X. Wang, H. Guo, N. Wu, M. Xu, L. Zhang, W. Yang, Colloid Surface A, 615, 126218 (2021).

9. J. Qian, L. Zhang, J. Wang, Z. Teng, T. Cao, L. Zheng, H. Guo, J. Hazard Mater., 401, 123863 (2021).

10. Y. Wang, X. Liu, M. Wang, X. Wang, W. Ma, J. Li, Sensor Act. B, 329, 129115 (2021).

11. L. Cao, T. Zhu, M. Zan, Y. Liu, X. Xing, Q. Qian, L. Li, Sensor Act. B, 370, 132424 (2022).

12. M. J. Yang, J. X. Shi, Y. Yin, et al., Phys. Status Solidi (b), 258, No. 10, 2100110 (2021).

13. M. Preethi, C. Viswanathan, N. Ponpandian, J. Photochem. Photobiol. A: Chemistry, 426, 113765 (2022).

14. 14. Z. Yang, H. Li, T. Xu, et al., J. Mater. Chem. A, 11, No. 6, 2679–2689 (2023).

15. Y. Zhu, G. Li, W. Li, et al., Dyes and Pigments, 215, 111303 (2023).

16. S. G. Khasevani, S. Shahsavari, M. R. Gholami, Mater. Res. Bull., 138, 111204 (2021).

17. 17. R. Liu, J. Alloys and Compd., 855, 157456 (2021).

18. N. Xin, D. Gao, B. Su, et al., ACS Sensors, 8, No. 3, 1161–1172 (2023).

19. Z. Xu, W. Huang, C. Chen, et al., Materials Today Chemistry, 27, 101269 (2023).

20. J. Li, W. Fu, X. Zhang, et al., Carbon, 208, 208–215 (2023).

21. D. Lee, W. Park, H. Kim, et al., Dyes and Pigments, 217, 111441 (2023).

22. H. Ma, L. Guan, M. Chen, et al., Chem. Eng. J., 453, 139906 (2023).

23. Y. Liu, J. Chen, Z. Xu, et al., Environ. Chem. Lett., 20, No. 6, 3415–3420 (2022).

24. J. Lin, X. Huang, E. Kou, et al., Biosensors and Bioelectronics, 219, 114848 (2023).

25. H. S. Shahraki, A. Ahmad, Qurtulen, et al., J. Inorganic and Organometallic Polymers and Materials (2023), doi: 10.21203/rs.3.rs-2569839/v1.

26. P. Doyoon, K. Seokyoon, L. Hyeona, et al., Microchem. J., 196 (2024).

27. 27. L Meng, H. Wu, RSC Adv., 14, No. 22, 15499–15506 (2024).

28. R. Zribi, H. M. Raza, N. Pinna, et al., Proceedings, 97, No. 1, 39–43 (2024).

29. D. Yu-Zhu, Z. Yi-Da, S. Yan-Ping, J. Chromatography A, 1693, 463881–463881 (2023).

30. M. N. Bogachuk, A. S. Shibaeva, M. A. Paleeva, A. D. Malinkin, Nutrition Issues, N 6, 544 (2022).

31. Y. Gu, Y. Huang, Z. Qiu, et al., Sci. China Life Sci., 63, No. 1, 68–79 (2020).

32. Y.-D. Wu, G.-H. Zhang, Y. Wang, et al., Metall. Mater. Trans. B, 50, No. 4, 1696–1703 (2019).

33. 33. L. W. Zhang, H. B. Fu, Y. F. Zhu, Adv. Funct. Mater., 18, No. 15, 2180–2189 (2010).

34. H. Zhang, H. Huang, Y. Liu, et al., J. Mater. Chem., 22, No. 38, 20182–20185 (2012).

35. S. Han, R. Dai, Y. Hu, et al., Spectrochim. Acta, Part A: Mol. and Biomolec. Spectroscopy, 264, 120295 (2022).

36. J. Shen, S. M. Shang, X. Y. Chen, D. Wang, Y. Cai, Sensor Act. B: Chem., 248, 92–100 (2017).

37. T. K. Mondal, S. Mondal, U. K. Ghorai, S. K. Saha, J. Colloid Interface Sci., 553, 177–185 (2019).


Review

For citations:


Yang H., Yang X. Preparation of Nitrogen-Doped Carbon Quantum Dots and Analysis and Detection of Vitamin B2. Zhurnal Prikladnoii Spektroskopii. 2026;93(1):144/1-144/9.

Views: 5

JATS XML

ISSN 0514-7506 (Print)