Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optimized Low-Cost Liquid‒Liquid Extraction Mode for the Removal and Spectrophotometric Determination of Cr(VI) from Polluted Water

Abstract

/

Chromium(VI), considered one of the most hazardous elements, directly affects human health and the environment. Therefore, in this study, a new approach is devised for liquid‒liquid extraction and spectrophotometric measurement of hexavalent chromium by employing a novel spectrophotometric reagent, where by 2-chlorobenzaldehyde Thiocarbohydrazone in dichloroethane is employed as a complexing reagent for chromium(VI) in the presence of potassium iodide, resulting in a yellow complex at room temperature. This approach offers a considerable benefit, being a straightforward procedure that does not require any extra solvent purification or preconcentration. The ternary [Cr(VI)-CBTCH-iodide] complex was quantitatively recovered in dichloroethane from 3.5 mol L hydrochloric acid medium. The maximum absorbance at λmax 415 nm was reached, and the sample was stable for 72 h. The method showed excellent analytical response, with a limit of detection of 0.32 µg/mL, a wide working range of up to 10.25 µg/mL, and reasonable accuracy (RSD < 2%, n = 5). The molar absorptivity and Sandell sensitivity of the ternary complex are 0.3535×104 L/mol × cm and 0.0147 µg/cm, respectively, whereas 2.496 is the enrichment factor. Using the log‒log plot method, the [Cr(VI)-CBTCH-iodide] complex composition was verified to be 1:2:2. There are no noticeable consequences of possibly interacting ions. Chromium(VI) was successfully extracted and determined simultaneously from alloy samples, contaminated water, and synthetic mixtures via this technology. The applied method has numerous advantages, including simplicity, low cost, ease of operation, rapid detection, low ligand consumption, and high sensitivity. The sensitivity of the analytical method was proven by selecting appropriate experimental conditions.

About the Authors

Ashwini V. Sadlapurkar
Nagesh Karajgi Orchid College of Engineering and Technology; Shri Shivaji Mahavidyalaya
India

Department of Chemistry, Nagesh Karajgi Orchid College of Engineering and Technology; 
Chemistry Research Laboratory, Department of Chemistry, Shri Shivaji Mahavidyalaya

Solapur, Maharashtra; Barshi, Maharashtra



Umesh B. Barache
Shri Shivaji Mahavidyalaya
India

Chemistry Research Laboratory, Department of Chemistry

Barshi, Maharashtra



Abdul B. Shaikh
Shri Shivaji Mahavidyalaya
India

Chemistry Research Laboratory, Department of Chemistry

Barshi, Maharashtra



Shashikant H. Gaikwad,
Shri Shivaji Mahavidyalaya
India

Chemistry Research Laboratory, Department of Chemistry

Barshi, Maharashtra



Anita A. Ghare
Lal Bahadur Shastri College of Arts, Science and Commerce
India

Department of Chemistry

Satara, Maharashtra



Arati V. Diwate
Sangameshwar College
India

Department of Chemistry

Solapur, Maharashtra



Ganesh S. Kamble
Kolhapur Institute of Technology, College of Engineering (Empowered Autonomous)
India

Department of Engineering Chemistry

Kolhapur, Maharashtra



Tukaram N. Lokhande
Shri Shivaji Mahavidyalaya
India

Chemistry Research Laboratory, Department of Chemistry

Barshi, Maharashtra



References

1. T. L. DesMeris, M. Costa, Curr. Opinion Toxic., 14, 1–7 (2019).

2. H. Oliveira, J. Bot., 10, 355843 (2012).

3. A. N. Uddin, F. J. Burns, T. G. Rossman, H. Chen, T. Kluz, M. Costa, Toxic. Appl. Pharm., 221, 329–338 (2007).

4. A. M. Zayed, N. Terry, Plant and Soil., 249, 139–156 (2003).

5. R. Goswami, C. Bhagat, I. Lollen, N. Neog, U. B. Barache, R. Thakur, J. Mahlknecht, M. Kumar, Chemosphere, 323, 138067 (2023).

6. C. Pellerin, S. M. Booker, Environ. Health Perspect., 108, 402–407 (2000).

7. M. A. Zaitoun, Int. J. Environ. Anal. Chem., 85, 399–407 (2005).

8. M. Korn, M. G. Korn, B. F. Reis, E de Oleveira, Talanta, 41, 2043–2047 (1994).

9. J. B. Vera, M. C. Bisinoti, C. D. B. Amaral, M. H. Gonzalej, Environ. Nanotechnol. Mon. Manag., 15, 100421 (2021).

10. H. W. Sun, W. J. Kang, S. X. Liang, J. Ha, S. G. Shen, Anal. Sci., 19, 589–592 (2003)

11. J. C. R. Garcia, J. B. Garcia, C. H. Latorre, S. G. Martin, R. C. P. Crecente, J. Agric. Food Chem., 53, 6616–6623 (2005).

12. I. Kużelewska, H. P. Motrenko, B. Danko, J. Radioanal. Nucl. Chem., 310, 559–564 (2016).

13. G. J. Feng, S. Chang-jun, Y. Mei, H. Dan-qun, F. Huan-bao, RSC Adv., 6, 104693–104698 (2016).

14. V. D. S. E. Leite, B. G. L. D. Jesus, V. G. D. O. Duarte, V. R. L. V. Constantino, C. M. S. Izumi, J. Tronto, F. G. Pinto, Microchem. J., 146, 650–657 (2019).

15. A. Shishov, P. Terno, L. Moskvin, A. Bulatov, Talanta, 206, 120209 (2020).

16. L. Zhang, X. Li, X. Wang, W. Wang, X. Wang, H. Han, Anal. Methods, 6, 5578–5583 (2014).

17. 17. X. Zhu, B. Hu, Z. Jiang, M. Li, Water Res., 39, 589–595 (2004).

18. F. Guozhen, L. Jikuen, Talanta, 39, 1579–1582 (1992).

19. H. Khan, F. N. Talpur, A. Shah, A. Balouch, Sindh Univ. Res. J., 45, 141–148 (2013).

20. H. D. Revanasiddappa, T. N. K. Kumar, J. Anal. Chem., 56, 1084–1088 (2001).

21. D. Yuan, D. Fu, R. Wang, J. Yuan, Spectrochim. Acta A, 71, 276–279 (2008).

22. M. Kamburova, Talanta, 40, 725–728 (1993).

23. M. S. El-Shahavi, S. S. M. Hasan, A. M. Othman, M. A. Zyada, M. A. El-Sonbati, Anal. Chim. Acta, 534, 319–326 (2005).

24. H. D. Revanasiddappa, T. N. K. Kumar, Talanta, 60, 1–8 (2003).

25. B. Narayana, T. Cherian, J. Braz. Chem. Soc., 16, 978–981 (2005).

26. A. A. Mohamed, M. F. El-Shahat, Anal. Sci., 16, 151–155 (2000).

27. D. G. Themelis, F. S. Kika, A. Economou, Talanta, 69, 615–620 (2006).

28. P. Nagaraj, N. Aradhana, A. Shivakumar, A. K. Sreshtha, A. K. Gowda, Environ. Mon. Assess, 157, 575–582 (2009).

29. A. M. Jamaluddin, H. M. Reazul, Res. J. Chem. Sci., 1, 46–52 (2011).

30. L. S. de Carvalho, A. C. S. Costa, S. L. C. Ferreira, L. S. G. Teixeira, J. Braz. Chem. Soc., 15, 153–156 (2004).

31. U. B. Barache, A. B. Shaikh, S. A. Deodware, P. C. Dhale, T. N. Lokhande, S. H. Gaikwad, Int. J. Environ. Anal. Chem., 99, 621–640 (2019).

32. A. V. Sadlapurkar, U. B. Barache, A. B. Shaikh, P. C. Dhale, S. H. Gaikwad, T. N. Lokhande, Chem. Data Collect., 37, 100798 (2022).

33. U. B. Barache, A. B. Shaikh, T. N. Lokhande, M. A. Anuse, G. S. Kamble, V. M. Gurame, S. H. Gaikwad, J. Environ. Chem. Eng., 5, 4828–4840 (2017).

34. U. B. Barache, A. B. Shaikh, T. N. Lokhande, G. S. Kamble, M. A. Anuse, S. H. Gaikwad, Spectrochim. Acta A, 189, 443–453 (2018).

35. U. B. Barache, B. T. Khogare, A. B. Shaikh, S. A. Deodware, B. N. Kokare, A. G. P. Rodriguez, T. N. Lokhande, S. H. Gaikwad, Chem. Data Collect, 19, 100173 (2019).

36. A. V. Sadlapurkar, U. B. Barache, A. B. Shaikh, A. S. Lawand, S. H. Gaikwad, T. N. Lokhande, J. Trace Elem. Min., 2, 100026 (2022).

37. S. H. Gaikwad, U. B. Barache, T. N. Lokhande, M. A. Anuse, Int. J. Environ. Anal. Chem., 100, 1792893 (2020).

38. A. B. Shaikh, U. B. Barache, B. T. Khogare, R. Goswami, B. N. Kokare, P. P. Wadgaonkar, S. H. Gaikwad, Spectrochim. Acta A, 243, 118814 (2020).

39. A. B. Shaikh, U. B. Barache, T. N. Lokhande, G. S. Kamble, M. A. Anuse, S. H. Gaikwad, Rasay. J. Chem. 10, 967–980 (2017).

40. A. B. Shaikh, U. B. Barache, A. S. Lawand, G. S. Kamble, M. L. Gaur, S. H. Gaikwad, Spectrochim. Acta A, 285, 121918 (2022).

41. A. B. Shaikh, S. H. Gaikwad, U. B. Barache, Anal. Chem. Lett., 10, 336–356 (2020).


Review

For citations:


Sadlapurkar A.V., Barache U.B., Shaikh A.B., Gaikwad, Sh.H., Ghare A.A., Diwate A.V., Kamble G.S., Lokhande T.N. Optimized Low-Cost Liquid‒Liquid Extraction Mode for the Removal and Spectrophotometric Determination of Cr(VI) from Polluted Water. Zhurnal Prikladnoii Spektroskopii. 2026;93(1):147/1-147/12.

Views: 3

JATS XML

ISSN 0514-7506 (Print)