Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

APPLICATION OF RAMAN SPECTROSCOPY FOR THE DETECTION OF ACETONE DISSOLVED IN TRANSFORMER OIL

Abstract

The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratioI780/I893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

About the Authors

Z. . Gu
Chongqing University; State Grid Shandong Electric Power Research Institute
Russian Federation


W. . Chen
Chongqing University
Russian Federation


L. . Du
Chongqing University
Russian Federation


H. . Shi
Chongqing University
Russian Federation


F. . Wan
Chongqing University
Russian Federation


References

1. T. K. Saha, IEEE Trans. Dielectr. Electr. Insul., 10, 903-917 (2003).

2. M. Arshad, S. M. Islam, IEEE Trans. Dielectr. Electr. Insul., 18, 1591-1598 (2011).

3. A. M. Emsley, X. Xiao, R. J. Heywood, M. Ali, Proc. Inst. Electr. Eng. Sci. Meas. Technol., 147, 110-114 (2000).

4. IEC60422, Mineral Insulating Oils in Electrical Equipment - Supervision and Maintenance Guidance (2005).

5. M. Duval, IEEE Electr. Insul. Mag., 5, 22-27 (1989).

6. G. C. Stevens, A. M. Emsley, Proc. Inst. Electr. Eng., Sci. Meas. Technol., 141, 324-334 (1994).

7. L. Lundgaard, D. Allan, I. Hohlein, R. Clavreul, M. Dahlund, H.-P. Gasser, R. Heywood, C. Krause, M. C. Lessard, T. K. Saha, V. Sokolov, A. Pablo, Ageing of Cellulose in Mineral-Oil Insulated Transformers, Cigre Brochuer (2007).

8. J. Jalbert, R. Gilbert, Y. Denos, P. Gervais, IEEE Trans. Power Del., 27, 514-520 (2012).

9. S. Okabe, S. Kaneko, M. Kohtoh, T. Amimoto, IEEE Trans. Dielectr. Electr. Insul., 17, 302-311 (2010).

10. G. Ueta, T. Tsuboi, S. Okabe, T. Amimoto, IEEE Trans. Dielectr. Electr. Insul., 19, 2216-2224 (2012).

11. S. Okabe, G. Ueta, T. Tsuboi, IEEE Trans. Dielectr. Electr. Insul., 20, 346-355 (2013).

12. T. Ishii, T. Oshi, Y. Makino, T. Hara, IEEE/PES T&D 2002 Asia Pacific, 3, 1834-1838 (2002).

13. O. H. Arroyo, I. Fofana, J. Jalbert, R. Mohamed, IEEE Trans. Dielectr. Electr. Insul., 22, 3625-3632 (2015).

14. A. C. T. Ko, L. P. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, B. Cleghorn, Opt. Express, 14, 203-215 (2006).

15. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, A. M. Zheltikov, Opt. Lett., 37, 4642-4644 (2012).

16. I. Pence, A. Mahadevan-Jansen, Chem. Soc. Rev., 45, 1958-1979 (2016).

17. M. Okuno, H. Hamaguchi, Opt. Lett., 35, 4096-4098 (2010).

18. G. Romero, Y. Qiu, R. A. Murray, S. E. Moya, Macromol. Biosci., 2, 234-241 (2013).

19. I. Pence, D. Beaulieu, S. Horst, X. Bi, A. Herline, D. Schwartz, A. Mahadevan-Jansen, Biomed. Opt. Express, 8, 524-535 (2017).

20. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, T. Huser, Biophys. J., 90, 648-656 (2006).

21. R. J. Liao, J. Hao, G. Chen, L. J. Yang, IEEE Trans. Dielectr. Electr. Insul., 19, 821-829 (2012).

22. W. G. Chen, Z. L. Gu, J. X. Zou, F. Wan, Y. Z. Xiang, IEEE Trans. Dielectr. Electr. Insul., 19, 915-921 (2016).

23. P. Cossee, J. H. Schachtschneider, J. Chem. Phys., 44, 97-111 (1965).

24. H. Torii, M. Musso, M. G. Giorgini, J. Mol. Liq., 134, 129-135 (2007).

25. F. H. Tukhvatullin, U. N. Tashkenbaev, A. Jumabaev, H. Hushvaktov, A. Absanov, G. Sharifov, J. Nonlinear. Opt. Phys., 22, 277-282 (2013).

26. M. Ku, H. Chung, Appl. Spectrosc.,53, 557-564 (1999).

27. T. Somekawa, M. Kasaoka, F. Kawachi, Y. Nagano, M. Fujita, Y. Izawa, Opt. Lett., 38, 1086-1088 (2013)

28. G. J. Puppels, W. Colier, J. H. F. Olminkhof, C. Otto, F. F. M. Demul, J. Greve, J. Raman Spectrosc., 22, 217-225 (1991).

29. K. Maquelin, L. P. Choo-Smith, H. P. Endtz, H. A. Bruining, G. J. Puppels, J. Clin. Microbiol., 40, 594-600 (2002).

30. F. Zapata, C. Garcia-Ruiz, Anal. Chem., 88, 6726-6733 (2016).

31. X. G. Yang, Q. L. Wu, Raman Spectroscopy Analysis and Application, Beijing, National Defense Industry Press (2008) 3-10 (in Chinese).

32. T. Somekawa, A. Tani, M. Fujita, Appl. Phys. Express, 4, 112401-112403 (2011).

33. T. Somekawa, M. Fujita, L. Yasukazu, K. Makoto, N. Yoshitomo, IEEE Trans. Dielectr. Electr. Insul., 22, 229-231 (2015).


Review

For citations:


Gu Z., Chen W., Du L., Shi H., Wan F. APPLICATION OF RAMAN SPECTROSCOPY FOR THE DETECTION OF ACETONE DISSOLVED IN TRANSFORMER OIL. Zhurnal Prikladnoii Spektroskopii. 2018;85(2):205-211. (In Russ.)

Views: 319


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)