Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

HYPERSPECTRAL IMAGING AND SPA-LDA QUANTITATIVE ANALYSIS FOR DETECTION OF COLON CANCER TISSUE

Abstract

Hyperspectral imaging (HSI) has been demonstrated to provide a rapid, precise, and noninvasive method for cancer detection. However, because HSI contains many data, quantitative analysis is often necessary to distill information useful for distinguishing cancerous from normal tissue. To demonstrate that HSI with our proposed algorithm can make this distinction, we built a Vis-NIR HSI setup and made many spectral images of colon tissues, and then used a successive projection algorithm (SPA) to analyze the hyperspectral image data of the tissues. This was used to build an identification model based on linear discrimination analysis (LDA) using the relative reflectance values of the effective wavelengths. Other tissues were used as a prediction set to verify the reliability of the identification model. The results suggest that Vis-NIR hyperspectral images, together with the spectroscopic classification method, provide a new approach for reliable and safe diagnosis of colon cancer and could lead to advances in cancer diagnosis generally.

About the Authors

X. . Yuan
Ministry of Education, Optical Instrument and Systems Engineering Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology
Russian Federation


D. . Zhang
Ministry of Education, Optical Instrument and Systems Engineering Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology
Russian Federation


Ch. . Wang
Ministry of Education, Optical Instrument and Systems Engineering Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology
Russian Federation


B. . Dai
Ministry of Education, Optical Instrument and Systems Engineering Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology
Russian Federation


M. . Zhao
Ministry of Education, Optical Instrument and Systems Engineering Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology
Russian Federation


B. . Li
Ministry of Education, Optical Instrument and Systems Engineering Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology
Russian Federation


References

1. R. S. Houlston, J. Clin. Pathol., 54, 206-214 (2001).

2. Cancer Research UK, Bowel Cancer Fact Sheet, May (2002).

3. S. Rathore, M. Hussain, A. Ali, A. Khan, IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 545-563 (2013).

4. Z. Liu, H. J.Wang, Q. L. Li, J. Sensors, 12, 162-174 (2012).

5. N. Fujioka, Y. Morimoto, T. Arai, M. Kikuchi, Cancer Detect. Prevent., 28, 32-36 (2004).

6. A. N. Esgiar, R. N. Naguib, B. S. Sharif, M. K. Bennett, A. Murray, IEEE Trans. Inform. Technol. Biomed., 2, 197-203 (1998).

7. A. B. Tosun, M. Kandemir, C. Sokemnsuer, C. Gunduz-Demir, Pattern Recogn., 42, 1104-1112 (2009).

8. U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, Proc. Natl. Acad. Sci. USA, 96, 6745-6750 (1999).

9. G. Marian, H. Patrick, B. Sandra, B. H. Amanda, W. Danny, V. Sudhir, S. Richard, L. Torsten, B. Heinz, J. D. Michael, B. M. Ghadimi, R. Thomas, J. Cancer Res., 67, 41-56 (2007).

10. S. Yajima, M. H. Ishii, K. Aoyagi. K. Yoshimatsu, H. Kaneko, N. Yamamoto, T. Teramoto, T. Yoshida, Y. Matsumura, H. Sasaki, Int. J. Oncol., 31, 1029-1037 (2007).

11. R. S. Gad, N. Vetrekar, I. Nazareth, J. S. Parab, IEEE Xplore, 741-744 (2012).

12. J. H. Lee, C. H. Won, IEEE Xplore, 1416-1419 (2009).

13. H. Akbari, K. Uto, Y. Kosugi, K. Kojima, N. Tanaka, Cancer Sci., 102, 852-857 (2011).

14. A. Zacher, Computer Vision and Graphics, Springer-Verlag, 376-384 (2010).

15. K. Rajpoot, N. Rajpoot, In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2004, Springer, Berlin Heidelberg, 829-837 (2004).

16. K. M. Rajpoot, N. M. Rajpoot, M. J. Turner, Hyperspectral Colon Tissue Cell Classification, 829-837 (2004).

17. K. Masood, N. Rajpoot, In Medical Image Understanding & Analysis (2007).

18. Y. Chen, D. Niedieker, F. Großerüschkamp, M. Horn, A. Tannapfel, A. K. Thieltges, K. Gerwert, A. Mosig, J. BMC Bioinform., 16, 144-147 (2015).

19. M. Maggioni, G. L. Davis, F. J. Warner, F. B. Geshwind, A. C. Coppi, R. A. DeVerse, R. R. Coifman. Algorithms from Signal and Data Processing Applied to Hyperspectral Analysis: Discriminating Normal and Malignant Microarray Colon Tissue Sections Using a Novel Digital Mirror Device System (2006).

20. B. Li, Y. Zhou, M. Zhao, B. Hou, D. Zhang, Q. Wang, J. Food Process Preserv., 41, No. 1, 12749 (2016).

21. W. Di, D. W. Sun, H. Yong, Innov. Food Sci. Emerg. Technol., 16, 361-372 (2012).

22. M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, V. Visani, Chemom. Intell. Lab. Syst., 57, 65-73 (2001).

23. R. K. H. Galvão, M. C. U. Araújo, W. D. Fragoso, E. C. Silva, G. E. José, H. Paiva, J. Chemom. Intell. Lab. Syst., 92, 83-91 (2008).

24. E. R. Ziegel, Technometrics, 17, 108-110 (2002).


Review

For citations:


Yuan X., Zhang D., Wang Ch., Dai B., Zhao M., Li B. HYPERSPECTRAL IMAGING AND SPA-LDA QUANTITATIVE ANALYSIS FOR DETECTION OF COLON CANCER TISSUE. Zhurnal Prikladnoii Spektroskopii. 2018;85(2):293-298. (In Russ.)

Views: 227


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)