Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

METHODICAL ASPECTS OF THE CARBON DIOXIDE DETERMINING IN THE ATMOSPHERE BY USING of FTIR SPECTROSCOPY

Abstract

Monitoring the state of ground-based spectroscopic systems ensures high accuracy of atmospheric gas measurements and the possibility of using measurement data for validating satellite measurements and numerical models. Column-averaged carbon dioxide mixing ratios (XCO2) can be used to assess the quality of spectroscopic measurements because its content is stable in the atmosphere. We retrieved the XCO2 values from spectra measured by Fourier transform IR spectrometer Bruker 125HR (FTIR) between 2009 and 2017 at the Peterhof station (St. Petersburg, Russia). The total error of the FTIR CO2 columns retrieval is 4.18±0.02% with 0.36±0.06% and 4.16±0.02% for random and systematic errors, respectively. The data obtained are compared with model calculations based on long-term observations at the Mauna Loa station. Various schemes for the inverse problem solving are analyzed, their comparison is made among themselves, and estimates of empirical random errors in the determination of XCO2 are obtained. To improve the accuracy of XCO2 measurements, it is recommended simultaneously with the atmospheric gases measurements to determine the error of the Fourier-spectrometer phase and the slope of the zero line of the spectrum, taking into account various continuum sources of errors.

About the Author

Ya. A. Virolainen
Saint Petersburg State University
Russian Federation


References

1. P. R. Grifiths, J. A. de Haseth, J. D. Winerfordner. Fourier Transform Infrared Spectrometry, Hoboken, New Jersey, John Wiley & Sons, Inc. (2007) 463-479

2. A. Fried, D. Richter. In “Analytical Techniques for Atmospheric Measurement”, Ed. D. E. Heard, Blackwell Publishing, Oxford, UK (2006) 72-146

3. Ю. М. Тимофеев. Исследования атмосферы Земли методом прозрачности, Санкт-Петербург, Наука (2017) 114-188, 212-288

4. Наблюдательная сеть NDACC: http://www.ndsc.ncep.noaa.gov/

5. Наблюдательная сеть TCCON: https://tccon-wiki.caltech.edu/

6. Требования ВМО https://www.wmo-sat.info/oscar/requirements

7. F. Hase. Atm. Meas. Technol., 5 (2012) 603-610

8. М. В. Макарова, А. В. Поберовский, Ф. Хазе, Ю. М. Тимофеев, Х. Х. Имхасин. Журн. прикл. спектр., 83, № 3 (2016) 437-444

9. A. Goldman, R. H. Tipping, Q. Ma, C. D. Boone, P. F. Bernath, P. Demoulin, F. Hase, M. Schneider, J. W. Hannigan, M. T. Coffey, C. P. Rinsland. J. Quant. S. Radiat. Transfer, 103 (2007) 168-174

10. D. Wunch, G. C. Toon, J.-F. L. Blavier. R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, P. O. Wennberg. Philos. T. R. Soc. A, 369 (2011) 2087-2112

11. Наблюдательная сеть IRWG/NDACC: https://www2.acom.ucar.edu/irwg

12. S. Barthlott, M. Schneider, F. Hase, A. Wiegele, E. Christner, Y. González, T. Blumenstock, S. Dohe, O. E.García, E. Sepúlveda, K. Strong, J. Mendonca, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J, Notholt, B. Lejeune, E. Mahieu, N. Jones, D. W. T. Griffith, V. A. Velazco, D. Smale, J. Robinson, R. Kivi, P. Heikkinen, U. Raffalski. Atm. Meas. Technol., 8 (2015) 1555-1573

13. M. Reuter, M. Buchwitz, O. Schneising, F. Hase, J. Heymann, S. Guerlet, A. J. Cogan, H. Bovensmann, J. P. Burrows. Atm. Meas. Technol., 5 (2012) 1349-1357

14. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, H. Imhasin. J. Mol. Spectr., 323 (2016) 2-14

15. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Höpfner, N. B. Jones, C. P. Rinsland, S. W. Wood. J. Quant. S. Radiat. Transfer, 87 (2004) 25-52

16. https://acdb-ext.gsfc.nasa.gov/Data_services/automailer/index.html

17. M. Park, W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, M. J. Livesey. Geophys. Res.: Atm., 118, N 4 (2013) 1964-1980

18. S. Barthlott, M. Schneider, F. Hase, T. Blumenstock, M. Kiel, D. Dubravica, O. E.García, E. Sepúlveda, G. Mengistu Tsidu, S. Takele Kenea, M. Grutter, E. F. Plaza, W. Stremme, K. Strong, D. Weaver, M. Palm, T. Warneke, J. Notholt, E. Mahieu, C. Servais, N. Jones, D. W. T. Griffith, D. Smale, J. Robinson. Earth Syst. Sci. Data, 9 (2017) 15-29

19. Y. Timofeyev, D. Ionov, M. Makarova, Y. Virolainen, A. Poberovsky, A. Polyakov, H. Imhasin, S. Osipov, A. Rakitin, M. Kshevetskaya. Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, NATO Science for Peace and Security Series C: Environmental Security, XV (2013) 173-184

20. А. В. Ракитин, А. В. Поберовский, Ю. М. Тимофеев, М. В. Макарова, Т. Конвей. Изв. РАН, ФАО, 49, № 3 (2013) 298-303

21. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera. J. Quant. S. Radiat. Transfer, 110, N 9-10 (2009) 25-52

22. Я. А. Виролайнен, Ю. М. Тимофеев, А. В. Поберовский, А. В. Поляков, А. М. Шаламянский. Опт. атм. и океана, 30, № 2 (2017) 170-176

23. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, T. Blumenstock. Atm. Meas. Technol., 10 (2017) 4521-4536


Review

For citations:


Virolainen Ya.A. METHODICAL ASPECTS OF THE CARBON DIOXIDE DETERMINING IN THE ATMOSPHERE BY USING of FTIR SPECTROSCOPY. Zhurnal Prikladnoii Spektroskopii. 2018;85(3):453-460. (In Russ.)

Views: 371


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)