Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

FT-IR AND RAMAN SPECTROSCOPY AND COMPUTATION OF 5-METHYLFURFURAL

Abstract

5-Methylfurfural was studied by vibrational (IR and Raman) spectroscopy and computational methods (DFT/B3LYP&MP2). FT-IR and FT-Raman spectra in KBr (at room temperature) were collected. Gaussian 09 and Spartan 08 programs were used for conformational analysis and calculations of molecular structure, torsional barrier, and vibrational spectral data for the 5MF molecule. The obtained results were used in the analysis of experimental vibrational spectra of 5MF molecule.

About the Authors

Y. . Erdogdu
Gazi University
Russian Federation


T. R. Sertbakan
Ahi Evran University
Russian Federation


M. T. Güllüoğlu
Harran University
Russian Federation


Ş. . Yurdakul
Gazi University
Russian Federation


A. . Güvenir
Ahi Evran University
Russian Federation


References

1. A. J. Ragauskas, et al., Science, 311, 484 (2006).

2. J. N. Chheda, Y. R. Leshkov, J. A. Dumesic, Green Chem., 9, 342-350 (2007).

3. M. Rose, R. Palkovits, Macromol. Rapid Commun., 32, 1299-1311 (2011).

4. G. W. Huber, S. Iborra, A. Corma, Chem. Rev., 106, 4044 (2006).

5. D. Vlachos, J. Chen, R. Gorte, G. Huber, M. Tsapatsis, Catal. Lett., 140, 77 (2010).

6. M. Bicker, J. Hirth, H. Vogel, Green Chem., 5, 280 (2003).

7. J. P. Lange, E. van der Heide, J. van Buijtenen, R. Price, Chem. Sus. Chem., 5, 150 (2012).

8. G. Allen, H. J. Bernstein, Can. J. Chem., 33, 1055 (1955).

9. K. Dahlqvist, S. Forsen, J. Phys. Chem., 69, 4020 (1965).

10. R. S. Abraham, T. M. Siverns, Tetrahedron, 28, 3015-3024 (1972).

11. D. J. Chadwick, G. D. Meakins, E. E. Richards, Tetrahedron Lett., 36, 3183 (1974).

12. D. P. Roques, S. Combrisson, F. Wehrli, Tetrahedron Lett., 12, 104 (1975).

13. C. Petrongolo, Chem. Phys. Lett., 42, 5-12 (1976).

14. I. G. Joh, L. Radom, J. Am. Chem. Sot., 100, 3981 (1978).

15. T. S. Little, J. Qin, J. R. Durig, Spectrochim. Acta, A, 45, 789 (1989).

16. L. A. Montero, R. Jonte, L. A. Gonzalez, J. R. Diaz, R. Alvarez Idaboy, J. Phys. Chem., 98, 5607 (1994).

17. R. Crespo-Otero, L. A. Montero, G. Rosquete, J. A. Padron-Garcia, R. H. Gonzalez-Jonte, J. Comput. Chem., 25, 3 (2003).

18. F. A. Miller, W. G. Fateley, R. E. Witkowski, Spectrochim. Acta A, 23, 891-908 (1967).

19. R. A. Motiyenko, E. A. Alekseev, S. F. Dyubko, J. Mol. Spectrosc., 244, 9-12 (2007).

20. Spartan 08, Wavefunction Inc., Irvine, CA 92612, USA (2008).

21. T. A. Halgren, J. Comput. Chem., 17, 490-519 (1996).

22. Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT (2010).

23. R. D. Dennington, T. A. Keith, J. M. Millam, GaussView 5, Gaussian Inc. (2008).

24. A. D. Becke, J. Chem. Phys., 98, 5648-5652 (1993).

25. Modern Density Functional Theory: a Tool for Chemistry, Eds. J. M. Seminario, P. Politzer, 2, Elsevier, Amsterdam (1995)

26. A. D. Becke, J. Chem. Phys., 107, 8554-8560 (1997).

27. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 785-789 (1988).

28. W. J. Hehre, L. Random, P. V. R. Schleyer, J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York (1986).

29. M. A. Palafox, G. Tardajos, A. G. Martines, V. K. Rastogi, D. Mishra, S. P. Ojha, W. Kiefer, Chem. Phys., 340, 17 (2007).

30. N. C. Handy, P. E. Masley, R. D. Amos, J. S. Andrews, C. W. Murray, G. Laming, Chem. Phys. Lett., 197, 506 (1992).

31. SQM version 2.0, Scaled Quantum Mechanical Force Field, Green Acres Road, Fayetteville, Arkansas, USA (2013).

32. 512-9 J. Baker, A. A. Jarzecki, P. Pulay, J. Phys. Chem. A, 102, 1412-1424 (1998).

33. D. Michalska, R. Wysokinski, Chem. Phys. Lett., 403, 211 (2005).

34. T. Shalumova, J. M. Tanski, Acta Cryst., E66, 2266 (2010).

35. Ö. Dereli, S. Sudha, N. Sundaraganesan, J. Mol. Struct., 994, 379-386 (2011).

36. D. Sajan, Y. Erdogdu, R. Reshmy, Ö. Dereli, K. Kurien Thomas, I. Hubert Joe, Spectrochim. Acta, A, 82, 118-125 (2011).

37. M. Arockia Doss et al., Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 151, 773-784 (2015).

38. T. Kim, R. S. Assary, L. A. Curtiss, C. L. Marshall1, P. C. Stair, J. Raman Spectrosc., 42, 2069-2076 (2011).

39. T. Iliescu, F. D. Irimie, M. Bolboaca, C. Paisz, W. Kiefer, Vibr. Spectrosc., 29, 235-239 (2002).

40. S. Subashchandrabose, H. SaleemY. Erdogdu, Ö. Dereli, V. Thanikachalam, J. Jayabharathi, Spectrochim. Acta, A, 86, 231-241 (2012).

41. F. J. Luque, J. M. Lopez, M. Orozco, Theor. Chem. Acc., 103, 343-345 (2000).

42. N. Okulik, A.H. Jubert, Internet Electron. J. Mol. Des., 4, 17-30 (2005).

43. C. Parlak, M. Akdogan, G. Yildirim, N. Karagoz, E. Budak, C. Terzioglu, Spectrochim. Acta, A, 79, 263-271 (2011).

44. K. Fukui, Science, 218, 747 (1982).

45. G. Gece, Corros. Sci., 50, 2981-2992 (2008).

46. T. A. Koopmans, Physica, 1, 104-113 (1933).


Review

For citations:


Erdogdu Y., Sertbakan T.R., Güllüoğlu M.T., Yurdakul Ş., Güvenir A. FT-IR AND RAMAN SPECTROSCOPY AND COMPUTATION OF 5-METHYLFURFURAL. Zhurnal Prikladnoii Spektroskopii. 2018;85(3):512(1)-512(8). (In Russ.)

Views: 314


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)