Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

A STUDY OF THE TERAHERTZ SPECTRA OF CRYSTALLINE MATERIALS (POLYETHYLENE, POLY(VINYLIDENE FLUORIDE) FORM II, AND a-D-GLUCOSE) USING NDDO SEMIEMPIRICAL METHODS

Abstract

Semiempirical quantum chemistry methods offer a very interesting compromise between accuracy and computational complexity. The low frequency vibration modes of three crystalline materials, namely, polyethylene, poly(vinylidene fluoride) form II, and a-D-glucose, have been studied using the PM6 and PM7 Hamiltonians in order to assess the performance of NDDO methods in the interpretation of terahertz spectra. The results have been compared with the available experimental data and former calculations performed using alternative methods. NDDO calculations are in good qualitative or semiquantitative agreement with the experimentally observed terahertz spectra.

About the Author

P. . Chamorro-Posada
Universidad de Valladolid, ETSI Telecomunicación
Russian Federation


References

1. Terahertz Spectroscopy and Imaging, Eds. K.-E. Peiponen, J. A. Zeitler, M. Kuwata-Gonokami, Springer, Heildelberg (2013).

2. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, J. Mol. Struct., 1006, 41-51 (2011).

3. P. Chamorro-Posada, J. Vázquez-Cabo, F. M. Sánchez-Arévalo, P. Martín-Ramos, J. Martín-Gil, L. M. Navas-Gracia, R. C. Dante, J. Solid State Chem., 219, 232-241 (2014). 516-8

4. P. Chamorro-Posada, J. Vázquez-Cabo, O. Rubiños-López, J. Martín-Gil, S. Hernández-Navarro, P. Martín-Ramos, F. M. Sánchez-Arévalo, A. V. Tamashausky, C. Merino-Sánchez, R. C. Dante, Carbon, 98, 484-490 (2016).

5. A. P. Scott, L. Radom, J. Phys. Chem., 100, 16502-16513 (1996).

6. M. B. Coolidge, J. E. Marlin, J. J. P. Stewart, J. Comput. Chem., 12, 948-952 (1991).

7. Z. A. Fekete, E. A. Hoffmann, T. Körtvélyesi, B. Penke, Mol. Phys., 105, 2597-2605 (2007).

8. J. D. C. Maia, G. A. U. Carvalho, C. P. Mangueira, Jr., S. R. Santana, L. A. F. Cabral, G. B. Rocha, J. Chem. Theory Comput., 8, 3072-3081 (2012).

9. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902-3909 (1985).

10. J. J. P. Stewart, J. Comp. Chem., 10, 209-220 (1989).

11. J. J. P. Stewart, J. Mol. Model., 13, 1173-1213 (2007).

12. J. J. P. Stewart, J. Mol. Model., 19, 1-32 (2013).

13. P. P. Stewart, Computational Chemistry, Colorado Springs, USA (2012); http://openmopac.net.

14. J. J. P. Stewart, J. Mol. Model., 14, 499-535 (2008).

15. E. M. Amrheim, Ann. N.Y. Acad. Sci., 196, 179-194 (1972).

16. A. R. Allouche, J. Comput. Chem., 32, 174-182 (2011).

17. V. A. Bershtein, V. A. Ryzhov, Adv. Polym. Sci., 114, 43-121 (1994).

18. S. Wietzke, C. Jansen, M. Reuter, T. Jung, J. Hehl, D. Kraft, S. Chatterjee, A. Greiner, M. Koch, Appl. Phys. Lett., 97, 022901 (2010).

19. S. K. Husain, J. B. Hasted, D. Rosen, E. Nicol, J. R. Birch, Infrared Phys., 24, 209-213 (1984).

20. M. Walther, B. M. Fischer, P. U. Jepsen, Chem. Phys., 288, 261-268 (2003).

21. P. C. Upadhya, Y. C. Shen, A. G. Davies, E. H. Linfield, Vib. Spectrosc., 35, 139-143 (2004).

22. G. Avitabile, R. Napolitano, B. Pirozzi, K. D. Rouse, M. W. Thomas, B. T. M. Willis, J. Polym. Sci.: Polym. Lett. Ed., 13, 351-355 (1975).

23. M. Tasumi, S. Krimm, J. Chem. Phys., 46, 755-766 (1967).

24. M. I. Bank, S. Krim, J. Appl. Phys., 39, 4951-4958 (1968).

25. G. D. Dean, D. H. Martin, Chem. Phys. Lett., 1, 415-416 (1967).

26. J. R. Birch, K. F. Ping, Infrared Phys. Technol., 36, 673-677 (1995).

27. S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, J. Chem. Phys., 25, 549-562 (1956).

28. M. Tasumi, T. Shimanouchi, J. Chem. Phys., 43, 1245-1258 (1965).

29. J. E. Bertie, E. Whalley, J. Chem. Phys., 41, 575-576 (1964).

30. A. O. Frenzel, J. P. Butler, J. Opt. Soc. Am., 54, 1059-1060 (1964).

31. W. F. X. Frank, H. Schmidt, B. Heise, Polymer, 22, 17-19 (1981).

32. J. W. Fleming, G. W. Chantry, P. A. Turner, E. A. Nicol, H. A. Willis, M. E. A. Budby, Chem. Phys. Lett., 17, 84-85 (1972).

33. R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polym. J., 3, 600-610 (1972).

34. J. F. Rabolt, K. W. Johnson, J. Chem. Phys., 59, 3710-3712 (1973).

35. M. Kobayashi, K. Tashiro, H. Tadokoro, Macromolecules, 8, 158-171 (1975).

36. T. Mori, H. Igawa, D. Okada, Y. Yamamoto, K. Iwamoto, N. Toyota, S. Kojima, J. Mol. Struct., 1090, 93-97 (2015).

37. H. M. G. Correia, M. M. D. Ramos, Comput. Mater. Sci., 33, 224-229 (2005).

38. N. J. Ramer, T. Marrone, K. A. Stiso, Polymer, 47, 7160-7165 (2006).

39. G. M. Brown, H. A. Levy, Acta Crystallogr., B35, 656-659 (1979).

40. M. Hineno, H. Yoshinaga, Spectrochim. Acta, 28A, 2263-2268 (1972).

41. M. Hineno, H. Yoshinaga, Infrared Phys., 16, 535-542 (1976).

42. Z.-P. Zheng, W.-G. Fan, Y.-Q. Liang, H. Yan, Opt. Commun., 285, 1868-1871 (2012).

43. M. Dauchez, P. Derreumaux, G. Vergoten, J. Comput. Chem., 14, 236-277 (1992).


Review

For citations:


Chamorro-Posada P. A STUDY OF THE TERAHERTZ SPECTRA OF CRYSTALLINE MATERIALS (POLYETHYLENE, POLY(VINYLIDENE FLUORIDE) FORM II, AND a-D-GLUCOSE) USING NDDO SEMIEMPIRICAL METHODS. Zhurnal Prikladnoii Spektroskopii. 2018;85(3):516(1)-516(8). (In Russ.)

Views: 248


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)