Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

THEORETICAL CALCULATION OF GEOMETRY AND VIBRATIONAL FREQUENCIES OF TRIPHENYLMETHANE

Abstract

The Raman spectrum of polycrystalline triphenylmethane (TPhM) is recorded at room temperature in the range 4000-400 cm- 1 . The optimal structure and the vibrational spectra (Raman and IR) of TFM have been calculated in the B3LYP/6-311G (d, p) approximation. On the basis of visualization of vibrations, the theoretical modes and the corresponding experimental bands of the Raman spectrum are assigned to the valence and deformation vibrations of certain bonds in the TFM molecule. Most bands and, in particular, the most intense bands in the Raman spectra of TFM are due to vibrations in monosubstituted benzene rings. Some of the theoretical modes and the corresponding experimental bands are assigned to benzene modes in Wilson notation.

About the Authors

N. M. Shishlov
Ufa Institute of Chemistry, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation


S. L. Khursan
Ufa Institute of Chemistry, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation


V. V. Lazarev
Ufa State Aviation Technical University
Russian Federation


V. V. Nechaev
Yuri Gagarin State Technical University of Saratov
Russian Federation


References

1. N. M. Shishlov, S. L. Khursan. J. Struct. Chem., 52, N 2 (2011) 272-286

2. N. M. Shishlov, S. S. Akhmetzyanov, S. L. Khursan. J. Mol. Struct., 1130 (2017) 963-973

3. W. G. Brown, C. J. Mighton, M. Senkus. J. Org. Chem., 3, N 1 (1938) 62-75

4. A. L.Gruger, J. M. Lebas. J. Chim. Phys., 62, N 11-12 (1965) 1318-1333

5. Gaussian 09, Revision C.1. 2009, Gaussian, Inc., Wallingford CT

6. G. A. Zhurko. ChemCraft, Version 1.6 (build 332), http://www.chemcraftprog.com

7. A. D. Becke. J. Chem. Phys., 98, N 7 (1993) 5648-5652

8. C. Lee, W. Yang, R. G. Parr. Phys. Rev. B, 37, N 2 (1988) 785-789

9. K. Raghavachari, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys., 72, N 1 (1980) 650-654

10. https://www.sigmaaldrich.com/spectra/rair/RAIR000026.PDF

11. D. C. Levendis, I. Bernal. Struct. Chem., 8, N 4 (1997) 263-273

12. N. Veldman, A. L. Spek, J. J. Schlotter. J. W. Zwikker, L. W. Jenneskens. Acta Crystallogr. C, 52, N 1 (1996) 174-177

13. E. B.Wilson. Phys. Rev., 45, N 10 (1934) 706-714

14. G. Varsányi, L. Láng. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley (1974)

15. A. M. Gardner, T. G. Wright. J. Chem. Phys., 135, N 11 (2011) 114305

16. M. A. Palafox, M. Gill, N. J. Nunez, V. K. Rastogi, L. Mittal, R. Sharma. Int. J. Quantum Chem., 103, N 4 (2005) 394-421

17. А. М. Богомолов. Опт. и спектр., 9, № 3 (1960) 311-318

18. R. E. Weston, A. Tsukamoto, N. N. Lichtin. Spectrochim. Acta, 22, N 3 (1966) 433-453


Review

For citations:


Shishlov N.M., Khursan S.L., Lazarev V.V., Nechaev V.V. THEORETICAL CALCULATION OF GEOMETRY AND VIBRATIONAL FREQUENCIES OF TRIPHENYLMETHANE. Zhurnal Prikladnoii Spektroskopii. 2018;85(4):525-531. (In Russ.)

Views: 267


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)