Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

EARLY STAGE DETECTION OF STRESS DUE TO COPPER ON MAIZE (Zea mays L.) BY LASER INDUCED FLUORESCENCE AND INFRARED SPECTROSCOPY

Abstract

Laser-induced fluorescence (LIF) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been applied for the non-destructive, label free, and rapid analyses of the impact of copper (25, 50, and 75 mM) on maize seedlings at an early stage before the changes appear visually on the plant. The LIF measurement has been used to detect the signs of stress in the photosynthetic pigment. The integrated areal intensity and increasing fluorescence intensity ratios indicate decrease in the photosynthetic pigments in the leaves of maize plants stressed with copper. The ATR-FTIR technique has been utilized to estimate the changes arising in the cell wall polysaccharides, amino acid, secondary structure of protein and lipid content of the leaves of control and copper-treated maize seedlings. The second derivative and curve fitting analysis have been applied for the enhancement of the spectral variations and quantitative estimation of the changes arising in the biochemical profile. The result shows an increase in the pectin, lignin, amino acid, and protein content and reduction in the amount of cellulose and lipid in the leaves of maize seedlings due to the treatment of copper. This study indicates the toxic response of copper by hampering the growth and reduction in the photosynthetic pigments and biochemical content of the maize seedlings. This study also demonstrates the feasibility of the spectroscopic techniques (LIF and ATR-FTIR) as a rapid, label free, and nondestructive probe for the assessment of stress and monitoring of crops.

About the Authors

S. . Sharma
University of Allahabad
Russian Federation


K. N. Uttam
University of Allahabad
Russian Federation


References

1. J. J. Liu, Z. Wei, J. H. Li, Bot. Stud., 55 (2014); doi:10.1186/s40529-014-0047-5.

2. S. Doncheva, Z. Stoyanova, K. Georgieva, D. Nedeva, R. Dikova, G. Zehirov, A. Nikolova. J. Plant Nutr. Soil Sci., 169, 247-254 (2014).

3. B. Printz, S. Lutts, J. Hausman, K. Sergeant, Front. Plant Sci., 7 (2016); doi: 10.3389/fpls.2016.00601.

4. K. Drzewiecka, M. Mleczek, M. Gąsecka, Z. Magdziak, A. Budka, T. Chadzinikolau, Z. Kaczmarek, P. Goliński, J. Plant Physiol., 216, 125-134 (2017).

5. A. S. Badr, G. Patricia, V. D. Florence, T. M-Laure, E. Daniel, B. Pierre-Marie, Plant Sci., 166, 1213-1218 (2004).

6. Y. Xu, W, Yu, Q. Ma, H. Zhou, C. Jiang, Ecotoxicol. Environ. Saf., 142, 250-256 (2017).

7. Z. T. Xiong, C. Liu, B. Geng, Rupr. Ecotoxicol. Environ. Saf., 64, 273-280 (2006).

8. S. Akhtar, A. Shoaib, N. Akhtar, R. Mehmood, J. Anim. Plant Sci., 26, 1339-1345 (2016)

9. K. Możdżeń, T. Wanic, G. Rut, T. Łaciak, A. Rzepka, Photosynthetica, 55, 193-200 (2017).

10. S. Khatuna, M. B. Ali, E. J. Hahna, K. Y. Paeka, Environ. Exp. Bot., 64, 279-285 (2008).

11. Y. V. Ivanov, A. V. Kartashov, A. I. Ivanova, Y. V. Savochkin, V. V. Kuznetsov, Environ. Sci. Pollut. Res., 23, 17332-17344 (2016).

12. R. Gopal, K. B. Mishra, M. Zeeshan, S. M. Prasad, M. M. Joshi, Curr. Sci. India, 83, 880-884 (2002).

13. S. Sharma, K. N. Uttam, Spectrosc. Lett., 49, 520-528 (2016).

14. S. Sharma, K. N. Uttam, Vib. Spectrosc., 92, 135-150 (2017).

15. S. Sharma, S. Srivastava, R. Singh, K. N. Uttam, Spectrosc. Lett., 50, 115-123 (2017).

16. H. K. Lichtenthaler, Method Enzymol., 148, 350-382 (1987).

17. A. Barth, Prog. Biophys. Mol. Biol., 74, 141-173 (2000).

18. P. Robert, M. Marquis, C. Barron, F. Guillon, L. Saulnier, J. Agric. Food Chem., 53, 7014-7018 (2005).

19. H. Schulz, M. Baranska, Vib. Spectrosc., 43, 13-25 (2007). 684-10

20. A. Alonso-Simon, A. E. Encina, P. Garcıa-Angulo, J. M. Alvarez, J. L. Acebes, Plant Sci., 167, 1273-1281 (2004).

21. N. Labbé, T. G. Rials, S. S. Kelley, Z. M. Cheng, J. Y. Kim, Y. Li, Wood Sci. Technol., 39, 61-76 (2005).

22. A. Barth, Biochim. Biophys. Acta, 1767, 1073-1101 (2007).

23. K. S. Bandekar, J. Adv. Protein Chem., 38, 181-364 (1986).

24. J. C. Fernandes, P. Garcia-Angulo, L. F. Goulao, J. L. Acebes, S. Amancio, Plant Sci., 205, 111-120 (2013).

25. J. Yang, H. E. Yen, Plant Physiol., 130, 1032-1042 (2002).

26. J. Heredia-Guerrero, J. Benítez, E. Domínguez, I. Bayer, R. Cingolani, A. Athanassiou, A. Heredia, Front. Plant Sci., 5 (2014); doi: 10.3389/fpls.2014.00305.

27. R. Lahlali, Y. Jiang, S. Kumar, C. Karunakaran, X. Liu, F. Borondics, E. Hallin, R. Bueckert, Front. Plant Sci., 5 (2004); doi: 10.3389/fpls.2014.00747.

28. Z. Li, L. Wu, P. Hu, Y. Luo, P. Christie, J. Hazard. Mater., 261, 332-341 (2003).

29. H. K. Lichtenthaler, U. Rinderle. C. R. C. Crit. Rev. Anal. Chem., 19, sup. 1, S29-S85 (1988); doi: 10.1080/15476510.1988.10401466.

30. D. Tanyolac, Y. Ekmekc, S. Unalan, Chemosphere, 67, 89-98 (2007).

31. M. Bernal, M. Roncel, J. M. Ortega, R. Picorel, I. Yruela, Physiol. Plant., 120, 686-694 (2004).

32. E. Patsikka, M. Kairavuo, F. Sersen, E. M. Aro, E. Tyystjarvi, Plant Physiol., 129, 1359-1367 (2002).

33. A. Vassilev, F. Lidon, J. C. Ramalho, C. Do, M. Matos, G. Da, J. Central Eur. Agric., 4, 225-236 (2003).

34. W. Maksymiec, T. Baszynsi, J. Plant Physiol., 149, 196-200 (1996).

35. F. Monnet, N. Vailant, P. Vernay, A. Coudret, H. Sallanon, A. Hitmi, J. Plant Physiol., 158, 1137-1144 (2001).

36. H. K. Lichtenthaler, J. Plant Physiol., 148, 4-14 (1996).

37. B. Nedjimi, Y. Daoud, Funct. Ecol. Plants, 204, 316-324 (2009).

38. J. E. J. Weckx, H. M. M. Clijsters, Physiol. Plant., 96, 506-512 (1996).

39. O. Quariti, N. Boussama, M. Zarrouk, A. Cherif, M. H. Ghorbal, Phytochemistry, 45, 1343-1350 (1997).

40. Ecological Responses to Environment Stresses, Kluwer Academic, Netherlands, pp. 22-30 (1981).

41. M. Krzeslowska, Acta Physiol. Plant., 33, 35-51 (2011).

42. M. Ovečka, T. Takáč, Biotechnol. Adv., 32, 73-86 (2014).

43. L. Parrotta, G. Guerriero, K. Sergeant, G. Cai, J. Hausman. Front. Plant Sci., 6 (2015); doi: 10.3389/fpls.2015.00133.

44. C. C. Lin, L. M. Chen, Z. H. Liu, Plant Sci., 168, 855-861 (2005).


Review

For citations:


Sharma S., Uttam K.N. EARLY STAGE DETECTION OF STRESS DUE TO COPPER ON MAIZE (Zea mays L.) BY LASER INDUCED FLUORESCENCE AND INFRARED SPECTROSCOPY. Zhurnal Prikladnoii Spektroskopii. 2018;85(4):684(1)-684(10). (In Russ.)

Views: 285


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)