Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

THE BINDING OF FOUR LICORICE FLAVONOIDS TO BOVINE SERUM ALBUMIN BY MULTI-SPECTROSCOPIC AND MOLECULAR DOCKING METHODS: STRUCTURE-AFFINITY RELATIONSHIP

Abstract

Flavanones are the main compound of licorice, and the C¢-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C¢-4 position and a chalcone (isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multi-spectroscopic and molecular docking methods under physiological conditions. The binding mechanism of flavonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C¢-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.

About the Authors

J. . Hou
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
Russian Federation


Q. . Liang
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
Russian Federation


S. . Shao
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
Russian Federation


References

1. F. Gao, Y. Hu, G. Fang, G. Yang, Z. Xu, L. Dou, Z. Chen, G. Fan, J. Pharm. Biomed. Anal., 87, 241-260 (2014).

2. Q. Zhang, M. Ye, J. Chromatogr. A, 1216, 1954-1969 (2009).

3. I. Kitagawa, W. Z. Chen, T. Taniyama, E. Harada, K. Hori, M. Kobayashi, J. Ren, J. Pharm. Soc. Jpn., 118, 519-528 (1998).

4. B. Jayaprakasam, S. Doddaga, R. Wang, D. Holmes, J. Goldfarb, X.-M. Li, J. Agric. Food Chem., 57, 820-825 (2009).

5. C. Taniguchi, M. Homma, O. Takano, T. Hirano, K. Oka, Y. Aoyagi, T. Niitsuma, T. Hayashi, Planta Med., 66, 607-611 (2000).

6. Y. K. Lee, Y. W. Chin, J. K. Bae, J. S. Seo, Y. H. Choi, Planta Med., 79, 1656-1665 (2013).

7. Y. P. Wu, X. S. Meng, Y. R. Bao, S. Wang, J. Ethnopharmacol., 148, 266-270 (2013).

8. J. Y. Dai, J. L. Yang, C. Li, Acta Pharmacol. Sin., 29, 1086-1093 (2008).

9. J. H. Shi, J. Wang, Y. Y. Zhu, J. Chen, J. Lumin., 145, 643-650 (2014).

10. C. Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez, Am. J. Clin. Nutr., 79, 727-747 (2004).

11. U. Kragh-Hansen, Pharmacol. Rev., 33, 17-53 (1981).

12. M. Skrt, E. Benedik, Č. Podlipnik, N. P. Ulrih, Food Chem., 135, 2418-2424 (2012).

13. Y. P. Zhang, S. Y. Shi, X. R. Sun, K. L. Huang, X. Q. Chen, M. J. Peng, Food Res. Int., 44, 2861-2867 (2011).

14. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York (2006).

15. A. Papadopoulou, R. J. Green, R. A. Frazier, J. Agric. Food Chem., 53, 158-163 (2005).

16. K. A. Connors, Binding Constants: the Measurement of Molecular Complex Stability, Wiley, New York (1987).

17. J. Kopp, T. Schwede, Nucleic Acids Res., 32, D230-D234 (2004).

18. F. Kiefer, K. Arnold, M. Künzli, L. Bordoli, T. Schwede, Nucleic Acids Res., 37, D387-D392 (2009).

19. O. Trott, A. J. Olson, J. Comput. Chem., 31, 455-461 (2010).

20. M. F. Sanner, J. Mol. Graph. Model., 17, 57-61 (1999). 170-12

21. W. R. Ware, J. Phys. Chem., 66, 455-458 (1962).

22. C. Manach, G. Williamson, C. Morand, A. Scalbert, C. Rémésy, Am. J. Clin. Nutr., 81, 230S-242S (2005).

23. X. M. Zhou, W. J. Lu, L. Su, Z. J. Shan, X. G. Chen, J. Agric. Food Chem., 60, 1135-1145 (2012).

24. P. D. Ross, S. Subramanian, Biochemistry (Moscow), 20, 3096-3102 (1981).

25. P. Kandagal, S. Ashoka, J. Seetharamappa, S. Shaikh, Y. Jadegoud, O. Ijare, J. Pharm. Biomed. Anal., 41, 393-399 (2006).

26. Y. Yue, Y. Zhang, L. Zhou, J. Qin, X. Chen, J. Photochem. Photobiol. B: Biol., 90, 26-32 (2008).

27. S. Y. Bi, D. Q. Song, Y. Tian, X. Zhou, Z. Y. Liu, H. Q. Zhang, Spectrochim. Acta, A, 61, 629-636 (2005).

28. D. Lu, X. Zhao, Y. Zhao, B. Zhang, B. Zhang, M. Geng, R. Liu, Food Chem. Toxicol., 49, 3158-3164 (2011).

29. D. J. Li, M. Zhu, C. Xu, B. M. Ji, Eur. J. Med. Chem., 46, 588-599 (2011).

30. M. S. Zaroog, S. Tayyab, Process Biochem., 47, 775-784 (2012).

31. S. R. Feroz, S. B. Mohamad, N. Bujang, S. N. Malek, S. Tayyab, J. Agric. Food Chem., 60, 5899-5908 (2012).

32. Y. Q. Wang, B. P. Tang, H. M. Zhang, Q. H. Zhou, G. C. Zhang, J. Photochem. Photobiol. B: Biol., 94, 183-190 (2009).

33. T. Peters, Adv. Protein Chem., 37, 161-245 (1985).

34. X. M. He, D. C. Carter, Nature, 358, 209-215 (1992).

35. C. Dufour, O. Dangles, Biochim. Biophys. Acta, 1721, 164-173 (2005).

36. S. Baroni, M. Mattu, A. Vannini, R. Cipollone, S. Aime, P. Ascenzi, M. Fasano, Eur. J. Biochem., 268, 6214-6220 (2001).

37. T. Kosa, T. Maruyama, M. Otagiri, Pharm. Res., 14, 1607-1612 (1997).

38. W. Peng, F. Ding, Y. T. Jiang, Y. Sun, Y. K. Peng, Food Function, 5, 1203-1217 (2014).


Review

For citations:


Hou J., Liang Q., Shao S. THE BINDING OF FOUR LICORICE FLAVONOIDS TO BOVINE SERUM ALBUMIN BY MULTI-SPECTROSCOPIC AND MOLECULAR DOCKING METHODS: STRUCTURE-AFFINITY RELATIONSHIP. Zhurnal Prikladnoii Spektroskopii. 2017;84(1):170(1)-170(12). (In Russ.)

Views: 288


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)