Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

BUILDING A MODEL FOR CLASSIFICATION OF GRAIN BULK PRODUCTS BY DIFFUSE REFLECTION SPECTRA IN THE NEAR INFRARED REGION ON THE EXAMPLE OF LOGISTIC REGRESSION

Abstract

The possibility of determining a grain corps having a different grinding by the diffuse reflection spectrum was experimentally confirmed. Combinations of optical densities and their second derivatives for the wavelengths of 1200, 1422, 1778, 1916, and 2114 nm were used as features describing the diffuse reflection spectra of wheat and oats of different milling and humidity in the near infrared range. Using the example of logistic regression, 20 classification models based on two features were constructed: 10 models for optical density and 10 models for the second derivative of the optical density corresponding to the selected wavelengths. The best classification results were obtained by an algorithm that used the values of the second derivative of optical density at 1778 and 2114 nm as features.

About the Authors

S. V. Protsenko
Belarusian State University
Russian Federation


V. S. Mishurnaya
Belarusian State University
Russian Federation


E. S. Voropai
Belarusian State University
Russian Federation


References

1. В. П. Крищенко. Ближняя инфракрасная спектроскопия, Москва, Кронн-пресс (1997)

2. Е. С. Воропай, В. Г. Белкин, С. В. Проценко, К. В. Говорун, Е. А. Колова. Вестн. Бел. гос. ун-та, Сер. 1. Физ. мат. информ., № 1 (2016) 16-20

3. В. Г. Белкин, С. В. Проценко. Вестн. Бел. гос. ун-та. Сер. 1. Физ. Мат. Информ., № 3 (2014) 22-25

4. С. В. Проценко, Е. С. Воропай, В. Г. Белкин. Журн. прикл. спектр., 84, № 6 (2017) 1009-1012 [S. V. Protsenko, E. S. Voropai, V. G. Belkin. J. Appl. Spectr., 84 (2017) 1081-1083]

5. С. В. Проценко, Е. С. Воропай, В. Г. Белкин. Материалы междунар. науч.-техн. конф. “Материалы, оборудование и энергосберегающие технологии”, Могилев, 27 апреля 2017 г., БРУ (2017) 43-45

6. С. В. Проценко, В. Г. Белкин. Материалы XXIV междунар. науч.-практ. конф. аспирантов, магистрантов и студентов “Физика конденсированного состояния”, Гродно, 21 апреля 2016 г., ГрГУ (2016) 174-176

7. D. W. Hosmer Jr, S. Lemeshow, R. X. Sturdivant. Applied Logistic Regression, 398, John Wiley & Sons (2013)

8. S. Menard. Applied Logistic Regression Analysis, 106, Sage (2002)

9. E. Alpaydin. Introduction to Machine Learning, MIT press (2009)


Review

For citations:


Protsenko S.V., Mishurnaya V.S., Voropai E.S. BUILDING A MODEL FOR CLASSIFICATION OF GRAIN BULK PRODUCTS BY DIFFUSE REFLECTION SPECTRA IN THE NEAR INFRARED REGION ON THE EXAMPLE OF LOGISTIC REGRESSION. Zhurnal Prikladnoii Spektroskopii. 2019;86(1):122-127. (In Russ.)

Views: 283


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)