Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

STUDY OF THE INTERACTION OF QUERCETIN AND TAXIFOLIN WITH β-LACTOGLOBULIN BY FLUORESCENCE SPECTROSCOPY AND MOLECULAR DYNAMICS SIMULATION

Abstract

The interaction between quercetin and taxifolin with β-lactoglobulin (BLG) was investigated via various methods, including fluorescence spectroscopy, molecular docking and molecular dynamics (MD) simulation. The results have demonstrated that quercetin binds BLG with an affinity higher than that of taxifolin, which is attributed to the nonplanar C-ring and steric hindrance effect in taxifolin. The synchronous fluorescence spectra shows that quercetin and taxifolin do not induce conformational changes of BLG. Molecular docking studies have demonstrated that several amino acids are involved in stabilizing the interaction. Analysis of the MD simulation trajectories shows that the root mean square deviation (RMSD) of various systems reaches equilibrium. Time evolution of the radius of gyration shows as well that BLG and BLG-flavonoid complexes are stable within 5 ns. In addition, analyzing the RMS fluctuations, one can suggest that the structure of the ligand binding site remains rigid during the simulation. The secondary structure of BLG is preserved upon interaction with these flavonoids.

About the Author

F. S. Mohseni-Shahri
Bandar Abbas Branch, Islamic Azad University
Russian Federation


References

1. D. R. Flower, A. C. North, C. E. Sansom, Biochim. Biophys. Acta, 1482, 9-24 (2000).

2. S. Schlehuber, A. Skerra, Drug Discov. Today, 10, 23-33 (2005).

3. S. Petrovska, D. Jonkus, J. Zagorska, I. Ciprovica, Res. Rural Dev., 2, 74-80 (2017).

4. J. C. Ioannou, A. M. Donald, R. H. Tromp, Food Hydrocolloid, 46, 216-225 (2015).

5. S. A. Forrest, R. Y. Yada, D. Rousseau, J. Agric. Food Chem., 53, 8003-8009 (2005).

6. E. Reboul, Nutrients, 5, 3563-3581 (2013).

7. S. L. Maux, S. Bouhallab, L. Giblin, A. Brodkorb, T. Croguennec, Dairy Sci Technol., 94, 409-426 (2014).

8. T. Lefèvre, M. Subirade, Food Hydrocolloids, 15, 365-376 (2001).

9. M. Sahihi, Y. Ghayeb, A. K. Bordbar, Spectroscopy, 27, 27-34 (2012).

10. L. Liang, H.A. Tajmir-Riahi, M. Subirade, Biomacromolecules, 9, 50-56 (2008).

11. L. Liang, M. Subirade, J. Phys. Chem. B, 114, 6707-6712 (2010).

12. F. Mohammadi, M. Moeeni, Mater. Sci. Eng. C, 50, 358-366 (2015).

13. L. A. Weston, U. Mathesius, J. Chem. Ecol., 39, 283-297 (2013).

14. A. Massi, O. Bortolini, D. Ragno, T. Bernardi, G. Sacchetti, M. Tacchini, C. D. Risi, Molecules, 22, 1270-1297 (2017).

15. L. G. Costa, J. M. Garrick, P. J. Roquè, C. Pellacani, Oxid. Med. Cell. Longev., 2016, 1-10 (2016).

16. F. S. Mohseni-Shahri, M. R. Housaindokht, M. R. Bozorgmehr, A. A. Moosavi-Movahedi, Can. J. Chem., 94, 458-469 (2016).

17. M. C. Bohin, J. P. Vincken, H. T. W. M. Van der Hijden, H. Gruppen, J. Agric. Food Chem., 60, 4136-4143 (2012).

18. J. Essemine, I. Hasni, R. Carpentier, T. J. Thomas, H. A. Tajmir-Riahi, Int. J. Biol. Macromol., 49, 201-209 (2011).

19. M. A. Thompson, ArgusLab 40, Planaria Software LLC, Seattle; http://www. ArgusLabcom

20. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, J. Comput. Chem., 14, 1347-1363 (1993).

21. H. J. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun., 91, 43-56 (1995).

22. A. W. SchuÈttelkopf, D. M. Van Aalten, Acta Crystallogr. D, 60, 1355-1363 (2004).

23. H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunstetren, J. Hermans, Intermolecular Forces, Interaction Models for Water in Relation to Protein Hydration, Reidel Publishing, Dordrecht, The Netherlands (1981).

24. H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys., 81, 3684-3690 (1984).

25. C. Danciulescu, B. Nick, F. J. Wortmann, Biomacromolecules, 5, 2165-2175 (2004).

26. M. R. Eftink, C. A. Ghiron, Biochemistry, 15, 672-680 (1976).

27. M. Bhattacharyya, U. Chaudhuri, R. K. Poddar, Biochem. Biophys. Res. Commun., 167, 1146-1153 (1990).

28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, University of Maryland School of Medicine, 3rd ed., Springer, New York (2006).

29. C. Kanakis, P. Tarantilis, M. Polissiou, H. A. Tajmir-Riahi, J. Biomol. Struct. Dyn., 31, 1455-1466 (2012).

30. N. Tayeh, T. Rungassamy, J. R. Albani, J. Pharm. Biomed. Anal., 50, 107-116 (2009). 157-9

31. J. R. Lackowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, 111-150 (1983).

32. A. Mallick, S. Maiti, B. Haldar, P. Purkayastha, N. Chattopadhyaya, Chem. Phys. Lett., 371, 688-693 (2003).

33. P. Bourassa, S. Dubeau, G. M. Maharvi, A. H. Fauq, T. Thomas, H. A. Tajmir-Riahi, Biochimie, 93, 1089-1101 (2011).

34. F. Moeinpour, F. S. Mohseni-Shahri, B. Malaekeh-Nikouei, H. Nassirli, Chem. Biol. Interact., 257, 4-13 (2016).

35. S. Deepa, A. K. Mishra, J. Pharm. Biomed. Anal., 38, 556-563 (2005).

36. J. Kang, Y. Liu, M. Xie, Biochim. Biophys. Acta, 1674, 205-214 (2004).

37. Y. Q. Wang, H. M. Zhang, G. C. Zhang, Q. H. Zhou, Z. H. Fei, Z. T. Liu, Z. X. Li, J. Mol. Struct., 886, 77-84 (2008).

38. S. Roufik, S. F. Gauthier, X. J. Leng, S. L. Turgeon, Biomacromolecules, 7, 419-426 (2006).

39. M. Sahihi, Z. Heidari-Koholi, A. K. Bordbar, J. Macromol. Sci. B: Phys., 51, 2311-2323 (2015).

40. D. Renard, Small Angle Neutron Scattering Study оf Protein-Polysaccharide Mixtures Undershear, Dissertation thesis Universit´ e de Nantes, France (1994).

41. L. H. Riihimäki, M. J. Vainio, J. M. Heikura, K. H. Valkonen, V. T. Virtanen, P. M. Vuorela, J. Agric. Food Chem., 56, 7721-7729 (2008).


Review

For citations:


Mohseni-Shahri F.S. STUDY OF THE INTERACTION OF QUERCETIN AND TAXIFOLIN WITH β-LACTOGLOBULIN BY FLUORESCENCE SPECTROSCOPY AND MOLECULAR DYNAMICS SIMULATION. Zhurnal Prikladnoii Spektroskopii. 2019;86(1):157(1)-157(9). (In Russ.)

Views: 292


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)